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Abstract:

ue to the advent of industrialization, pollution of terrestrial environment by heavy

metals has emerged as a great issue. Therefore, it is an urgent need to realize the Hg-

induced toxicity in plants and as well as in animals and the harmful effects by the
consumption of contaminated nutrition. Mercury is considered as a hazardous contaminant that
can be changed into various oxidation states easily and causes many deleterious effects in several
physiological processes in both plants and animals. Microorganisms possess two extensively
studied Hg-detoxification processes like Mer operon (merTPCFAD) and Met gene which encode
the functional proteins for transportation (merT, merP and/or merC, merF), reduction (merA)
and a secondary regulatory protein (merD) and sulfhydrylase enzymes (met gene) respectively to
modify toxic Hg'* to nontoxic elemental state (Hg’). Due to the ever increase in Hg-pollution and
very little information about its phytotoxic effects and detoxification mechanisms, the authors
expect, the present article will make possibility in the provision of a comprehensive literature
study about Hg-induced toxicity in plants and its detoxification processes to provoke for advance

research in this field.
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Introduction

Mercury (Hg), also known as hydrargyrum or
quicksilver is a group IIb element with an atomic weight
of 200.59. Its property to remain liquid at room
temperature and normal pressure makes it a unique
metal. It rarely occurs in pure state in nature but is found
most commonly as the ore cinnabar (HgS) [1]. Earlier
records indicate that mercury is used in alchemy in
China as early as the second century B.C and references
to cinnabar mines and the medicinal use of mercury
were made by Pliny the Elder in the first century. On
average, the level of mercury in earth crust is around
~0.5 ppm but large deposits of Hg are found in the areas
of volcanic activity. It has been released into the
lithosphere, atmosphere and hydrosphere by
geochemical process and therefore it is an important
toxic element in the biosphere [2, 3]. Mercury tends to
be found in three oxidation states as a Hg”(elemental or
metallic), Hg,** (mercurous) and Hg?" (mercuric ion)
[4]. Metallic mercury is relatively nontoxic as compared
to oxidized states of Hg due to its low solubility, but it
can be modified to highly toxic oxidized forms in vivo
by catalase and peroxidase enzymes. The level to which
mercury can prove hazardous strongly relies in its
oxidation state. Different forms of mercury in chemical
terms have been classified [5, 6] as

Volatile species Hg’ and (CH;),Hg

Reactive Hg*?, HgX', HgX,, HgXy, HgX*
species (where X=OH-, Cl or Br’), HgO on
aerosol particles and complexes of
Hg with organic acids.
Nonreactive CHs;Hg', CH;HgCl, CH;HgOH
species and other (HgCN),, HgS and

organomercurials.
The highly toxic forms of mercury are the reactive
inorganic mercury ions (Hg'?) that possess great affinity
for cysteine residues of proteins and to N-atoms of
nuclear material of the cell and the organomercurial
monomethylmercury (CH:Hg"; MMHg) which have
high affinity for tissues of central nervous system, high
lipid solubility, high uptake rate across biological
membranes and longer residence/removal time in
biological tissues [7]. The characteristics of MMHg
contribute significantly to bioaccumulation and
biomagnification in mercury toxicity. Bioaccumulation
is defined as the increase in the total amount of Hg in an
organism over time while biomagnification of Hg
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(incremental increase of mercury concentration at each
trophic level of the food chain) is as the increase in
mercury concentrations in tissue through trophic
transfer, from primary producer to terminal
carnivorous consumers via food chain or food web [8].
MMHg is evenly distributed in body tissues while
inorganic mercury is unevenly distributed because of its
less efficiency than MMHg in crossing biological
membranes [9]. Mercury uptake, distribution, and
toxicity are therefore dependent on the speciation and
transformations of mercury.

Methods
Literature search strategy and selection criteria
A peer-reviewed literature search was carried out by use

» o«

of the key terms like “mercury toxicity”, “phytotoxicity”,
“Hg-oxidation states”, “biogeochemical cycling of
mercury”, “mercury detoxification systems”, “mer
operon” and “met gene” from Google Scholar, Google
Web Browser, PubMed Central, Springer Online
Archives Collection and PubMed for this review. The
retrieval of the search was done without applying any
filter to limit the study type. Articles resulting from these
searches and relevant references for this review were
selected published from August, 1939 to December,
2014. Articles published in various languages like
English, French, and German were also included. Some
references are not falling in the above mentioned key
terms due to their significant data or relevance to the
specificity of this topic. In this comprehensive review, 72
peer reviewed research and review articles were selected.

Discussion
The Biogeochemical Cycle of Mercury

Mercury occurs naturally in biogeochemical system of
earth, but centuries of anthropogenic activities [10] like
mining and fossil fuel burning [11], have been
mobilizing increasing amounts of mercury in the
atmosphere [12-14], terrestrial environment [15] and
aquatic systems [16-18]. Mercury can be transformed to
different  states by
methylation-demethylation

oxidation-reduction  and
processes. In  redox

reactions, the process of oxidation causes the mercury to

lose electrons by changing its valency from Hg’to Hg*

while reduction causes the mercury to gain electrons by

transforming to lower valence state [19-24].

The oxidation of mercury (Hg") in the atmosphere is a

significant phenomenon due its involvement in the
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dethronement of mercury in both soil and water.
Metallic mercury (Hg") can be volatilized easily into
vapors and discharge to the atmosphere where they can
be transmitted in air currents for a year or more and
again accumulate into the environment to initiate
another cycle [25,26]. In contrast, toxic mercuric state
(Hg*") can remain in the atmosphere for less than two
weeks because of its low tendency to evaporate, greater
solubility and reactive nature. Therefore, when
elemental mercury becomes ionic mercury, it tends to
quickly infuse in water as rain and snow and
consequently accumulate back in the environment
[27,28].

In nature, mercury changes to methylmercury upon
acquisition of the methyl group (CHs). This process
ends up producing extremely lethal compounds
including methylmercury (MeHg *) that tends to
accumulate in living cells and pass all along the food
chain, from smaller organisms i.e., microbes, then to
aquatic organisms i.e., fish and ultimately to humans
[29-32] (Figure 1).
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Figure 1: The global biogeochemical cycling of mercury
[33].

Uptake of Hg by Plants

Mercury toxicity has become an ever increasing
challenge as a consequence of global heavy metal
contamination. Considerable amount of mercury is
being added to agricultural soil due to the usage of
sewage sludge, chemical fertilizers, lime and manures
[34-36]. The dynamic association between mercury in
the soil and its absorption by the plants is not collinear
and depends on many variable factors like cation-anion
interchange capability, pH of soil, soil aeration and plant
varieties. With the increase in pH of soil and in the
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vicinity of lime and salts, the mercury absorption can be
decreased [37, 38].

It has been reported that the absorption of Hg is specific
to the bryophyte plants, lichens, mycorrhizae, wetland
plants, tracheophyte plants and crop vegetation [39].
Various aspects that affects the absorption of Hg by
plants include the organic matter of soil or sediments,
the interchange capability of various atoms and
molecules like carbon, oxides and carbonate content,
redox potential, the formulation used and the total metal
content. Generally, the absorption of mercury by plants
could be directly correlated to the contamination level.
The absorption of Hg in most of plants is due to its
accumulation in the plant roots or its absorption
through shoots in the form of vapors or by translocation
[40, 41]. It is considered that plants absorb the elemental
form (Hg’) and accumulate it in the shoots, but not
translocated to the roots [42].

Toxic mercuric ions are considered to get entry into
plant cells by same recruitment mechanisms as essential
nutrients compete with these ions for uptake. Mercury
(Hg), categorized as class B metal prefers to bind with
sulfur and nitrogenous ligands and is considered to get
entry into the cell through ion channels competing with
other toxic and essential metals. Nonetheless, this
knowledge is primarily a result of experiments in animal
cells and the authors believe that there are some other
mechanisms of mercury absorption that are still under
consideration [43, 44].

Phytotoxicity Induced by Hg

General Effects: The introduction of mercury in plant
systems has principle importance due to its application
in fertilizers, herbicides and seed disinfectants [45]. Few
mercury species are being used on tree foliage as
fungicides and they can be transferred, relocated and
redistributed in plants.

At the cellular and subcellular level, the processes by
which metals may prove lethal include obstruction of
biologically
polynucleotides),
micronutrients, displacement or substation of metal

significant molecules (e.g. enzymes,

transportation ~ systems  for
ions from biomolecules (such as magnesium (Mg*?)

from chlorophyll), deforming and inactivating
enzymatic proteins, and compromising cell membrane

integrity. The possible causal processes causing Hg-
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induced phytotoxicity are modifications in the porosity
of the outer cell envelop (cell membrane), high affinity
for reactive groups like sulphydryl, phosphate,
adenosine diphosphate or adenosine triphosphate, and
displacement of essential ions and its capability in the
disruption of several functions involving critical

proteins [37, 38].

Toxic mercuric ions also disrupt the antioxidant defense
mechanism by altering the modulation of non-protein
thiols,
ascorbate peroxidase and glutathione reductase and the

non-enzymatic  antioxidants  glutathione,

antioxidant enzyme superoxide dismutase [46-49].

The evidence of mecury phytotoxicity has been studied
in various grain crops like Oryza sativa and Triticum
aestivum. The primary effects of Hg compounds are on
the embryo and secondary on endosperm. Hg
compounds cause the breakdown of -SH- system by
interfering it in biological systems resulting in the
production of -S-Hg-S- bridge which may influence
germination and embryo development (rich in SH
ligands). In O. sativa and Zea mays, HgCl, is involved in
the obstruction of primary roots elongation as
compared to shoots [37, 38].

Hg influences both light and dark reactions of
photosynthesis by substituting the central atom of
chlorophyll (Mg"?) by Hg in vivo which is an important
damaging mechanism. It also reduces the transpiration
rate, water uptake and chlorophyll synthesis. Toxic
mercuric cations are involved in the loss of magnesium,
potassium, manganese and deposition of iron which
lead to the modifications in cell membrane porosity
[50].

Genotoxicity: The cellular and molecular mechanisms
that are involved in Hg-induced toxicity in plants are
practically unknown due to scarce studies considering
Hg genotoxicity. However, it has been shown that
mercury can insert harmful genetic effects to different
plant species [51].

In earlier experiments, multinucleated cells in the root
tips of corn seedlings, exposed to solution of Ceresan
(ethyl mercuric phosphate; a fungicide) resulted in the
formation of polyploidy, aneuploidy and c-tumors
[52,53].
treated), sister chromatid exchanges, chromosomal

through c-mitosis C-mitosis  (colchicine

aberrations and spindle alterations can be stimulated by
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several compounds at similar dosage but butyl mercury
bromide is most notable in this respect [54]. It has been
reported that inorganic mercury poisoning in Allium
cepa (onion) and Allium sativum (garlic) resulted in
reduction of mitotic index in the cells of root tip and an
increment in chromosomal aberrations that depend on
concentration and time of exposure. Mercuric chloride
(HgCl,) was concluded as more cytotoxic as compared
to mercurous chloride (HgCl,) and lowest effective
concentration tested (LECT) was measured as 10 ppm.
The greater tolerance of A. sativum than A. cepa was
attributed to the of high
heterochromatin in the former and low amount of sulfur
in the later [37, 38].

presence levels of

Detoxification of Hg in Soil through
Microorganisms

Release of Hg from natural sources (volcanic activity
and weathering of rocks) [55-57] and anthropogenic
sources (fossil fuel combustions, electricity-generating
grid stations, gold and mercury mining, production of
chlorine, cement, caustic soda, pesticides, medical
instruments, mirrors and industrial effluents etc)
[58,59] poses a major menace to the soil environment
[60]. Generally, heavy metals cannot be degraded by
biological mechanisms and exist in the environment to
an indefinite extent. After their accumulation in the
soils, the lethal heavy metals adversely influence the soil
microflora, including plant growth promoting
rhizobacteria (PGPR) in the rhizosphere, and their
physiological processes. Furthermore, the elevated
concentrations of Hg and their uptake by plants also
pose adverse affects on the plant growth [61], symbiotic
association and ultimately the crop yields by disrupting
cell organelles, and disintegrating the membranes,
substance disrupting the
[41,62].
Therefore, the remediation of Hg-polluted sites has

serving as genotoxic

photosynthetic and respiration processes

become an urgent need, as these lands have covered
large areas which have been interpreted inapplicable for
sustainable agriculture.

Two extensively studied resistance or detoxification
systems based on clustered genes on Mer operon and
Met gene. The mer operons (merTPCFAD) possess
variable structures and constitute a number of genes
which
Staphylococcus aureus and Bacillus sp., the merR genes

encode various functional proteins. In
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which are involved in the expression of functional
proteins for metalloregulation, are transcribed in that
direction as the structural genes of mer operon whereas
in other species, it is transcribed separately and
divergently from the structural genes. merR binds the
promoter-operator site of mer operon and activates/
represses the transcription of structural genes in the
presence/absence of activating concentration of Hg?*
respectively [63,64]. The structural mer genes are
involved in the expression of proteins which aid in the
transportation like merT, merP and merC, merF and
reduction (merA) of toxic form of mercury. merB genes
confer resistance to many organomercurials by
hydrolyzing the C-Hg bond [65]. The distal promoter
gene, merD binds weakly the same operator-promoter
site as and is involved in down-regulation of the mer
operon [66].

The other mercury detoxification system is the
expression of met gene which encodes sulfhydrylase
(SHLase)
methionine biosynthesis and results hydrogen sulfide

enzymes. This enzyme regulates the
(H.,S) production. H,S reacts with toxic form of mercury
(Hg') and precipitate it into nontoxic mercuric sulfide
(HgS) [67-69]. Detoxification mechanisms that employ
different

contaminants have obtained a profound interest in the

microbes to take off environmental
recent years [70]. The commonly used bacterial and
yeast genera in the bioremediation of Hg include
Klebsiella,
Rhodobacter and Saccharomyces, Candida and Pichia
respectively [37, 38, 71, 72].

Bacillus, Pseudomonas, Citrobacter,

Thus, by applying these microorganisms as a
biofertilizers to Hg-contaminated soils, the toxicity of
Hg can be reduced resulting in the enhancement of soil
fertility and crop productivity which aids in sustainable
agriculture.

Conclusion

In conclusion, mercury is a hazardous contaminant
associated with serious problems in plants and animals
because it can be easily spread through many
ecosystems. Unfortunately, very less information is
available about phytotoxicity caused by Hg, processes by
which Hg is absorbed by plant cells and detoxification
mechanisms by which it is modified from toxic to
nontoxic form in soil through microorganisms.
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Although plants attribute a significant role as the base of
several trophic levels in food chain particularly of
humankind subsistence and thriftiness, therefore, it is an
urgent necessity to step up the knowledge about the
mechanisms of Hg uptake by plants, its phytotoxicity
and detoxification mechanisms of this pollutant. The
mini review presented here will provide a worthy
rootage for other scientists engaged to research on Hg-
induced phytotoxicity and its modification or
detoxification processes to stimulate foster research in
this field.
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