CRISPR/Cas9 application in tomato breeding improvement: a review

Anh Phu Nam Bui

Abstract


Tomato (Solanum lycopersicum) is an essential plant because of its social and economic importance. Therefore, research have been focusing on improving tomato production. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (CRISPR/Cas9) system provides unique opportunities to better understand the gene functions and to rapidly generate new tomato cultivars harboring desired traits such as disease resistance, better harvest quality and abiotic tolerance. This review aims to provide latest information about the application of CRISPR/Cas9 system on tomato breeding.

Keywords: CRISPR; Tomato breeding; Applied research


Full Text:

PDF

References


Boase M, Tiffin H, Zhang H, Hunter D, Erridge Z, et al. Gene editing of tomato via Agrobacterium-mediated transformation with CRISPR/Cas9 constructs targeting cell wall genes. 2018; 32-34.

Chen L, Yang D, Zhang Y, Wu L, Zhang Y, et al. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. New Phytologist, (2018); 219(1): 176-194.

Wang R, Tavano ECdR, Lammers M, Martinelli AP, Angenent GC, et al. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Scientific Reports, (2019); 9(1): 1696.

Li X, Wang Y, Chen S, Tian H, Fu D, et al. Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing. Frontiers in Plant Science, (2018); 9(559): 1-12.

Hu N, Xian Z, Li N, Liu Y, Huang W, et al. Rapid and user-friendly open-source CRISPR/Cas9 system for single- or multi-site editing of tomato genome. Horticulture Research, (2019); 6(1): 7.

Ding F, Wang M, Zhang S. Sedoheptulose-1,7-Bisphosphatase is Involved in Methyl Jasmonate- and Dark-Induced Leaf Senescence in Tomato Plants. International journal of molecular sciences, (2018); 19(11): 3673.

Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, et al. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. Plant Physiology, (2019); 179(2): 544-557.

Prihatna C, Barbetti MJ, Barker SJ. A Novel Tomato Fusarium Wilt Tolerance Gene. Frontiers in Microbiology, (2018); 9(1226).

D’Ambrosio C, Stigliani AL, Giorio G. CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Research, (2018); 27(4): 367-378.

Wei F-J, Droc G, Guiderdoni E, Hsing Y-IC. International Consortium of Rice Mutagenesis: resources and beyond. Rice (New York, NY), (2013); 6(1): 39-39.

Li G, Chern M, Jain R, Martin Joel A, Schackwitz Wendy S, et al. Genome-Wide Sequencing of 41 Rice (Oryza sativa L.) Mutated Lines Reveals Diverse Mutations Induced by Fast-Neutron Irradiation. Molecular Plant, (2016); 9(7): 1078-1081.

Yang N, Wang R, Zhao Y. Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology. Molecular plant, (2017); 10(9): 1141-1143.

Romero FM, Gatica-Arias A. CRISPR/Cas9: Development and Application in Rice Breeding. Rice Science, (2019); 26(5): 265-281.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, (2013); 8(11): 2281-2308.

Li R, Fu D, Zhu B, Luo Y, Zhu H. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant Journal, (2018); 94(3): 513-524.

Li R, Zhang L, Wang L, Chen L, Zhao R, et al. Reduction of Tomato-Plant Chilling Tolerance by CRISPR–Cas9-Mediated SlCBF1 Mutagenesis. Journal of Agricultural and Food Chemistry, (2018); 66(34): 9042-9051.

Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, et al. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. The Plant Journal, (2018); 95(1): 5-16.

Forsyth A, Weeks T, Richael C, Duan H. Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants. Frontiers in Plant Science, (2016); 7(1572).

Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J, et al. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant biotechnology journal, (2019); 17(1): 132-140.

Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications, (2015); 467(1): 76-82.

Li R, Liu C, Zhao R, Wang L, Chen L, et al. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC plant biology, (2019); 19(1): 38-38.

Mishra R, Joshi RK, Zhao K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Frontiers in Plant Science, (2018); 9(1361).

Xie K, Yang Y. RNA-Guided Genome Editing in Plants Using a CRISPR–Cas System. Molecular Plant, (2013); 6(6): 1975-1983.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY), (2012); 337(6096): 816-821.

Xu R, Wei P, Yang J (2017) Use of CRISPR/Cas Genome Editing

Technology for Targeted Mutagenesis in Rice. In: Reeves A, editor. In Vitro Mutagenesis: Methods and Protocols. New York, NY: Springer New York. pp. 33-40.

Jiang Y, Chen B, Duan C, Sun B, Yang J, et al. Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Applied and Environmental Microbiology, (2015); 81(7): 2506-2514.

Laughery MF, Wyrick JJ. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae. Current Protocols in Molecular Biology, (2019); 129(1): e110.

Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O'Connor-Giles KM. CRISPR-Cas9 Genome Editing in Drosophila. Current protocols in molecular biology, (2015); 11131.32.31-31.32.20.

Dickinson DJ, Goldstein B. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering. Genetics, (2016); 202(3): 885-901.

Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications, (2018); 9(1): 1967.

Danilo B, Perrot L, Mara K, Botton E, Nogué F, et al. Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato. Plant Cell Reports, (2019); 38(4): 459-462.

Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant biotechnology journal, (2019); 17(3): 665-673.

Lang Z, Wang Y, Tang K, Tang D, Datsenka T, et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences, (2017); 114(22): E4511-E4519.

Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling & Behavior, (2018); 13(10): e1525996.

Jung YJ, Lee GJ, Bae S, Kang KK. Reduced Ethylene Production in Tomato Fruits upon CRSPR/Cas9-mediated LeMADS-RIN Mutagenesis. Horticultural Science and Technology, (2018); 36396-405.

Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, et al. De novo domestication of wild tomato using genome editing. Nature Biotechnology, (2018); 36(12): 1211-1216.

Yang Y, Zhu G, Li R, Yan S, Fu D, et al. The RNA Editing Factor SlORRM4 Is Required for Normal Fruit Ripening in Tomato. Plant Physiology, (2017); 175(4): 1690-1702.

Wang L, Chen L, Li R, Zhao R, Yang M, et al. Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants. Journal of Agricultural and Food Chemistry, (2017); 65(39): 8674-8682.

Filler Hayut S, Melamed Bessudo C, Levy AA. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communications, (2017); 8(1): 15605.

Nekrasov V, Wang C, Win J, Lanz C, Weigel D, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, (2017); 7(1): 482.

Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, et al. Functional Analysis of Coilin in Virus Resistance and Stress Tolerance of Potato Solanum tuberosum using CRISPR-Cas9 Editing. Doklady Biochemistry and Biophysics, (2019); 484(1): 88-91.

Veillet F, Perrot L, Chauvin L, Kermarrec M-P, Guyon-Debast A, et al. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. International Journal of Molecular Sciences, (2019); 20(2): 402.

Kirchner TW, Niehaus M, Rössig KL, Lauterbach T, Herde M, et al. Molecular Background of Pi Deficiency-Induced Root Hair Growth in Brassica carinata – A Fasciclin-Like Arabinogalactan Protein Is Involved. Frontiers in Plant Science, (2018); 9(1372): 1-17.

Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, et al. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology, (2019); 2(1): 46.

Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, (2017); 49(1): 162-168.


Refbacks

  • There are currently no refbacks.