Emergence of SARS-CoV-2: Insight in genomics to possible therapeutics

Saira Saeed, Shahbaz Ahmad, Aatikah Tareen, Atia Iqbal

Abstract


Rising of a new virus from city of Cathay, responsible for 2019 global pandemic is caused by SARS-CoV-2marked as a great threat for populations. The member (CoV-2) from vast family of Covid virus with single- stranded RNA spread to over 216 countries and billions of individuals died all around the globe. Regardless of all strict standard operating procedures, special care and therapies, SARS-CoV-2 mutating its genomic structure and leads to shutting the world. While different therapeutic approaches face problems due to the complexity in pathogenicity mechanism of CoV-2 and its variants. Mechanism of action, genome analysis, transmission, development of broad-spectrum antiviral medications and SARS-CoV-2 vaccines have been reported which are essential for future directions to control this pandemic. Here, in this review, these domains were discussed to highlight the genome structure pathophysiology, immune response, multiple diagnostic methods, and possible treatment strategies. This review deliberates the methodologies for creating practical vaccinations and treatment cocktail to manage this eruption.

Keywords: SARS-CoV-2; Genetics; Epidemiology    


Full Text:

PDF

References


Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet,(2020); 395 (10223): 497-506.

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature Review Microbiology,(2019); 17(3):181-92.

Lai CC, Shih TP, Ko WC. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2] and coronavirus disease-2019 (COVID-19]: the epidemic and the challenges. International journal of antimicrobial agents,(2020):105924.

World Health Organization. [2020]. Laboratory testing for coronavirus disease 2019 (COVID-19] in suspected human cases: interim guidance, 2 March 2020 (No. WHO/COVID-19/laboratory/2020.4]. World Health Organization.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

Chan JF, Yuan S, Kok KH. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet,(2020) ;395(10223):514-23.

Li X, Zai J, Zhao Q. Evolutionary history, potential intermediate animal host, and cross‐species analyses of SARS‐CoV‐2. Journal of medical virology,(2020); 92(6):602-11.

World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 16-24 February.

Zhong NS, Zheng BJ, Li YM. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China. The Lancet,(2003); 362(9393):1353-8.

Wang N, Shi X, Jiang L. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Research,(2013); 23(8):986.

Cauchemez S, Van Kerkhove MD, Riley S. Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS‐CoV) and how to tell them apart. European Surveillance,(2013); 18(24): 20503.

Snijder EJ, Van Der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, Van Der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. Journal of virology, (2006) ;80(12):5927-40.

Hussain S, Chen Y, Yang Y. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. Journal of Virology,(2005); 79(9):5288-95.

Sawicki SG,Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. Journal of Virology,(2007); 81(1):20-9.

Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis.Nature Review Microbiology,(2009); 7(6):439-50.

Woo PC, Huang Y, Lau SK, et al. Coronavirus genomics, and bioinformatics analysis. Viruses,(2010); 2:1804-20.

Drexler JF, Gloza-Rausch F, Glende J. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. Journal of Virology,(2010); 84: 11336–11349.

Shereen MA, Khan S, Kazmi A. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. Journal of Advance Research,(2020); 24:91-98.

R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu. Genomiccharacterisation and epidemiology of 2019 novel coronavirus: implicationsfor virus origins and receptor binding. Lancet,(2020);395 (10224): 565–574.

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis in Coronaviruses. Humana Press, (2015):1-23.

Masters PS. The molecular biology of coronaviruses. Advance Virus Research,(2006); 66:193-292.

Knoops K, Kikkert M, van den Worm SH. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biology,(2008); 6(9).

Zhou P, Yang XL, Wang XG. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature,(2020); 579(7798):270-3.

Wong SK, Li W, Moore MJ. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. Biology Chemistry,(2004); 279(5):3197-201.

Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Current Biology,(2020); 30(7):1346-1351.

Wang Q, Wong G, Lu G. MERS-CoV spike protein: Targets for vaccines and therapeutics.Antiviral Research,(2006); 133:165-77.

He Y, Zhou Y, Liu S. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochemistry Biophysics Research Communication,(2006); 324(2):773-81.

Tortorici MA, Veesler D. Structural insights into coronavirus entry.Advance virus Research,(2009); 105:93-116.

Zhang N, Jiang S, Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines.Expert Review Vaccines,(2014); 13(6):761-74.

Xia S, Zhu Y, Liu M. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein.Cell Molecular Immunology,(2020); 1-3.

Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes and infection,(2020); 22(2): 74-79.

Tripp, R. A., & Tompkins, S. M. (Eds.). Roles of host gene and non-coding RNA expression in virus infection. Switzerland: Springer International Publishing, (2018); 419

Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. InCoronavirus replication and reverse genetics. 2005; (pp. 31-55). Springer, Berlin, Heidelberg.

Hussain S, Chen Y, Yang Y. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. Journal of Virology,(2005); 79(9):5288-95.

Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A, Rouillé Y, Dubuisson J, BelouzardS.The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. Journal of Biological Chemistry, (2019); 294(39):14406-21.

Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoSpathogens, (2018); 14(8):e1007236.

Zhao Y, Zhao Z, Wang Y. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv. 2020.

Li G, Fan Y, Lai Y. Coronavirus infections and immune responses. Medical Virology,(2020); 92(4):424-32.

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nature Review Microbiology,(2016);14(8):523.

Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. InSeminars in immunopathology, 2017; 39(5]:529-539]. Springer Berlin Heidelberg.

Deng X, van Geelen A, Buckley AC. Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses. Journal of Virology, (2019); 93(8): 02000-18.

Yang CH, Li K, Pfeffer SR, Pfeffer LM. The type I IFN-induced miRNA, miR-21. Pharmaceuticals, (2015); 8(4):836-47.

Thimme R, Lohmann V, Weber F. A target on the move: innate and adaptive immune escape strategies of hepatitis C virus. Antiviral research,(2006); 69(3):129-41.

Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet,(2020); 395(10223):497-506.

Xu Z, Shi L, Wang Y, Zhang J. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Medicine,(2020); 8(4):420-422.

Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? American Journal of Physiology-Lung Cellular and Molecular Physiology,(2014); 306(3): 217-30.

Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. InSeminars in immunopathology 2017; 39(5):529-539]. Springer Berlin Heidelberg.

Cameron MJ, Bermejo-Martin JF, Danesh A. Human immunopathogenesis of severe acute respiratory syndrome (SARS]. Virus Research,(2008);133[1]:13-9.

Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M, Mondelli MU, Doria M, Torrisi MR, Barnaba V. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. The Journal of experimental medicine,(2005); 202(6):817-28.

Liu J, Wu P, Gao F, et al. Novel immunodominant peptide presentation strategy: a featured HLA-A* 2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. Journal of Virology,(2010); 84(22):11849-11857.

Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. New England Journal of Medicine,(2003);349(5):508-9.

Phan LT, Nguyen TV, Luong QC. Importation and human-to-human transmission of a novel coronavirus in Vietnam.New England Journal of Medicine,(2020); 382(9): 872-874.

Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus [2019-nCoV], December 2019 to January 2020. European surveillance,(2020); 25(4).

Parry J.China coronavirus: cases surge as official admits human-to-human transmission. British Medical Journal Publishing Group. 2020.

Li Q, Guan X, Wu P. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia.New England Journal of Medicine,

(2020).

Dehghani R, Kassiri H. A brief review on the possible role of houseflies and cockroaches in the mechanical transmission of Coronavirus Disease 2019 (COVID-19). Archives of Clinical Infectious Diseases,(2020);15.

Chin A, Chu J, Perera M, et al. Stability of SARS-CoV-2 in different environmental conditions. medRxiv. 2020.

WHO [2020b] Water, sanitation, hygiene, and waste management for COVID-19: technical brief, 03 March 2020. World Health Organization, Geneva. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control

Sobral MF, Duarte GB, da Penha Sobral AI. Association between climate variables and global transmission of SARS-CoV-2. Science of the Total Environment,(2020); 729:138997.

Pan Y, Guan H, Zhou S. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia [2019-nCoV]: a study of 63 patients in Wuhan, China. Eurpean Radiology,(2020).

Fang Y, Zhang H, Xie J. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020; 200432.

Zhou P, Yang XL, Wang XG. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature,(2020); 1-4.

Lu R, Zhao X, Li J. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, (2020).

The guidelines for diagnosis and treatment of novel coronavirus [2019-nCoV] infected pneumonia (the sixth edition draft] issued by the National Health Commission of China In. http://www.gov.cn/zhengce/zhengceku/2020-02/19/content_5480948.htm2020.

Chu DK, Pan Y, Cheng S. Molecular Diagnosis of a Novel Coronavirus [2019-nCoV] Causing an Outbreak of Pneumonia. Clinical Chemistry,(2020).

Wang M, Wu Q, Xu W. Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. medRxiv.2020.

Xiao SY, Wu Y, Liu H. Evolving status of the 2019 novel coronavirus infection: Proposal of conventional serologic assays for disease diagnosis and infection monitoring. Journal of Medical Virology,(2020).

Sun ZF, Meng XJ.Antigenic cross-reactivity between the nucleocapsid protein of severe acute respiratory syndrome (SARS] coronavirus and polyclonal antisera of antigenic group I animal coronaviruses: implication for SARS diagnosis. Journal of Clinical Microbiology,(2004); 42(5):2351-2352.

Zhu N, Zhang D, Wang W. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 2020.

What is CRISPR? Ask the Brain, January 1, 2019. The McGovern Institute for Brain Research, Massachusetts Institute of Technology. mcgovern.mit.edu/2019/01/01/crispr-in-a-nutshell/.

Zhang F, Abudayyeh OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics. A protocol for detection of COVID-19 using CRISPR diagnostics. (2020).

Guo X, Geng P, Wang Q, Cao B, Liu B. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus. Journal of Microbiology and Biotechnology,(2014); 24(10):1445-54.

Zhang ZW, Zhou YM, Zhang Y. Sensitive detection of SARS coronavirus RNA by a novel asymmetric multiplex nested RT-PCR amplification coupled with oligonucleotide microarray hybridization. In Microarrays in Clinical Diagnostics,(2005) :59-78.

Wang M, Cao R, Zhang L, Yang X. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus [2019-nCoV] in vitro. Cell research,(2020); 30(3):269-71.

Rider TH, Zook CE, Boettcher TL, et al. Broad-spectrum antiviral therapeutics. PLoS One 6.2011.

Tchesnokov EP, Feng JY, Porter DP. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses,(2019);11(4):326.

Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine,(2020).

Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrobial Agents and Chemotherapy,(2020);64(5).

Remdesivir shows clinical improvement in Phase III Covid-19 trial. https://www.clinicaltrialsarena.com/news/gilead-remdesivir-phaseiii-trial-data/.

Sheahan TP, Sims AC, Leist SR. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon-beta against MERS-CoV. Nature communications,(2020); 11 [1]:1-14.

Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet,(2020).

The Efficacy of Lopinavir Plus Ritonavir and Arbidol against Novel Coronavirus Infection (ELACOI]. https://clinicaltrials.gov/ ct2/show/NCT04252885.

Liu J, Cao R, Xu M, Wang X. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery,(2020); 6[1]:1-4.

Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Current Opinion in Infectious Disease,(2019); 32[2]:176.

Runfeng L, Yunlong H, Jicheng H. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2]. Pharmacological research,(2020); 20:104761

Ding Y, Zeng L, Li R. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC complementary and alternative medicine,(2017); 17[1]:130.

Guo D. Old weapon for new enemy: drug repurposing for treatment of newly emerging viral diseases. VirologicaSinica,(2020); 11:1-3.

Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel medicine and infectious disease,(2020).

Falzarano D, De Wit E, Rasmussen AL, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nature medicine,(2013); 19[10]:1313-7.88.

Guan WJ, Ni ZY, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. New England journal of Medicine,(2020); 382(18):1708-20.

Runfeng L, Yunlong H, Jicheng. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2]. Pharmacological research,(2020); 20:104761.

Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet,(2020); 395(10223):497-506.

Lin J, Zhang JS, Su N. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antiviral therapy,(2007); 12(7):1107.

Duan K, Liu B, Li C. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences,(2020); 117(17):9490-6.

Lei C, Qian K, Li T. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nature communications,(2020); 11(1):1-5.

Mubarak A, Alturaiki W, Hemida MG. Middle east respiratory syndrome coronavirus (MERS -CoV): infection, immunological response, and vaccine development. Journal of Immunology Research,(2019).

He F, Deng Y, Li W. CoronavirusDisease 2019 (COVID‐19): What we know? Journal of Medical Virology,(2020).

World Health Organization. Novel coronavirus [2019-nCoV] advice for the public. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public.

Shamsi A, Mohammad T, Anwar S, Amani S, Khan M S, Husain F M, Hassan M I. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. International Journal of Biological Macromolecules, (2021).

Volz E, Mishra S, Chand M, Barrett J C, Johnson R, Geidelberg L, Kwiatkowski D P. COVID-19 Genomics UK (COG-UK) consortium, Flaxman S, Ratmann O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NM. Assessing transmissibility of SARS-CoV-2 lineage B. 1.1. 7 in England. Nature, (2021);593(7858): 266-269.

Hirotsu Y, Omata M. Detection of R. 1 lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with spike protein W152L/E484K/G769V mutations in Japan. PLoSpathogens, (2021);17(6):e1009619.

Faria NR, Claro IM, Candido D, Franco LM, Andrade PS, Coletti TM, Silva CA, Sales FC, Manuli ER, Aguiar RS, Gaburo N. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological, (2021);372:815-21.

Momattin H, Al-Ali AY, Al-Tawfiq JA. A Systematic Review of therapeutic agents for the treatment of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Travel medicine and infectious disease, (2019);30:9-18.

Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology, (2014) 1;450:64-70.

Pruijssers AJ, Denison MR. Nucleoside analogues for the treatment of coronavirus infections. Current opinion in virology, (2019) ;35:57-62.

Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses—drug discovery and therapeutic options. Nature reviews Drug discovery, (2016) ;15(5):327-47.

Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert opinion on drug discovery, (2019);14(4):397-412.

Hegarty P, Kamat A, Zafirakis H, Dinardo A. BCG vaccination may be protective against Covid-19. Researchgate preprint. 2020.

Clinical trial number NCT04341389 for “A Phase II Clinical Trial to Evaluate the Recombinant Novel Coronavirus Vaccine (Adenovirus Vector) at ClinicalTrials.gov.

Clinical trial number NCT04444674 for A Study of a Candidate COVID-19 Vaccine (ChAdOx1 nCoV-19) Trial in South African adults with and without HIV-infection at ClinicalTrials.gov.

Bhatta, M., Nandi, S., Dutta, S., &Saha, M. K.. Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Human Vaccines &Immunotherapeutics, (2022);18(1): 1-18.

Kumar VM, Pandi-Perumal SR, Trakht I, Thyagarajan SP. Strategy for COVID-19 vaccination in India: the country with the second highest population and number of cases. npj Vaccines, (2021) ;6(1):1-7.

WHO. Coronavirus disease (COVID-19): vaccines. Who.int, 2021 [Accessed 31 Apr 2021].

Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacological Reports, (2020); 72(6): 1479-508.

Wang X, Guan Y. COVID‐19 drug repurposing: a review of computational screening methods, clinical trials, and protein interaction assays. Medicinal research review, (2021); 41(1): 5-28.

Smith T, Bushek J, LeClaire A, Prosser T. COVID-19 drug therapy. Elsevier, (2020).

Hoek JM, Field SM, de Vries YA, Linde M, Pittelkow MM, Muradchanian J, van Ravenzwaaij D. Rethinking remdesivir for COVID-19: A Bayesian reanalysis of trial findings. PloS one, (2021) ;16(7): e0255093.

Authorization, E.U., (2021). Emergency Use Authorization for Vaccines Explained what Is an Emergency Use Authorization (EUA)? Are the COVID-19 Vaccines Rigorously Tested? what Safety and Effectiveness Data Are Required to Be Submitted to FDA for an EUA Request for a Vaccine Intend 2–4.

Agrawal U, Raju R, Udwadia ZF. Favipiravir: A new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, (2020);76(4): 370-6.

Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn-schmiedeberg's Archives of Pharmacology, (2020); 393(7): 1153-6.

Kaur H, Shekhar N, Sharma S, Sarma P, Prakash A, Medhi B. Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes. Pharmacological Reports, (2021); 73(3): 736-49.

Mahmud R, Rahman MM, Alam I, Ahmed KG, Kabir AH, Sayeed SJ, Rassel MA, Monayem FB, Islam MS, Islam MM, Barshan AD. Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial. Journal of International Medical Research, (2021); 49(5): 03000605211013550.

Good SS, Westover J, Jung KH, Zhou XJ, Moussa A, La Colla P, Collu G, Canard B, Sommadossi JP. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrobial Agents and Chemotherapy, (2021) ;65(4): e02479-20.

Fischer W, Eron JJ, Holman W, Cohen MS, Fang L, Szewczyk LJ, Sheahan TP, Baric R, Mollan KR, Wolfe CR, Duke ER. Molnupiravir, an oral antiviral treatment for COVID-19. MedRxiv, (2021).

Zeng X, Song X, Ma T, Pan X, Zhou Y, Hou Y, Zhang Z, Li K, Karypis G, Cheng F. Repurpose open data to discover therapeutics for COVID-19 using deep learning. Journal of proteome research, (2020); 19(11): 4624-36.

Wu R, Wang L, Kuo HC, Shannar A, Peter R, Chou PJ, Li S, Hudlikar R, Liu X, Liu Z, Poiani GJ. An update on current therapeutic drugs treating COVID-19. Current pharmacology reports, (2020); 6(3): 56-70.

Vandyck K, Abdelnabi R, Gupta K, Jochmans D, Jekle A, Deval J, Misner D, Bardiot D, Foo CS, Liu C, Ren S. ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model. Biochemical and Biophysical Research Communications, (2021); 555: 134-9.

Mellott DM, Tseng CT, Drelich A, Fajtová P, Chenna BC, Kostomiris DH, Hsu J, Zhu J, Taylor ZW, Kocurek KI, Tat V. A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells. ACS chemical biology, (2021); 16(4): 642-50.

Chavda VP, Vora LK, Pandya AK, Patravale VB. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug discovery today, (2021) ;26(11):2619-36.

Mehta PP, Dhapte-Pawar VS. Novel and evolving therapies for COVID-19 related pulmonary complications. The American Journal of the Medical Sciences, 2021); 361(5): 557-66.

Lotz C, Muellenbach RM, Meybohm P, Mutlak H, Lepper PM, Rolfes CB, Peivandi A, Stumpner J, Kredel M, Kranke P, Torje I. Effects of inhaled nitric oxide in COVID‐19–induced ARDS–Is it worthwhile? Acta Anaesthesiologica Scandinavica, 2021);65(5): 629-32.

Thomas SJ, Moreira Jr ED, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C, Bailey R. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. New England Journal of Medicine, (2021); 385(19): 1761-73.

El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, Campbell TB, Clark J, Jackson LA, Fichtenbaum CJ, Zervos M. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. New England Journal of Medicine, (2021); 385(19):1774-85.

Falsey AR, Frenck Jr RW, Walsh EE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Bailey R, Swanson KA, Xu X, Koury K. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. New England Journal of Medicine, (2021); 385(17):1627-9.

Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Van Dromme I, Spiessens B, Vingerhoets J. Final analysis of efficacy and safety of single-dose Ad26. COV2. S. New England Journal of Medicine, (2022); 386(9): 847-60.

Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, Aileni VK, Kanungo S, Rai S, Reddy P, Verma S. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. The Lancet, (2021); 398(10317):2173-84.

Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Al Nusair M, Hassany M, Jawad JS, Abdalla J, Hussein SE. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. Jama, (2021);3 26(1): 35-45.

Fadlyana E, Rusmil K, Tarigan R, Rahmadi AR, Prodjosoewojo S, Sofiatin Y, Khrisna CV, Sari RM, Setyaningsih L, Surachman F, Bachtiar NS. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: An interim analysis in Indonesia. Vaccine, (2021); 39(44): 6520-8.

Halperin SA, Ye L, MacKinnon-Cameron D, Smith B, Cahn PE, Ruiz-Palacios GM, Ikram A, Lanas F, Guerrero ML, Navarro SR, Sued O. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. The Lancet, (2022); 399(10321): 237-48.




DOI: http://dx.doi.org/10.62940/als.v10i1.1209

Refbacks

  • There are currently no refbacks.