Variations in genomic epidemiology and in-silico screening of potential phytochemicals to cure Monkeypox

Muhammad Adil, Muhammad Waseem, Abdul Qadeer Haider, Nageen Hussain


Monkeypox virus (MPXV) is passed on when people encounter infectious animals. Before April 2022, the Monkeypox virus was reported only in South Africa and its surrounding region but now it has been spread all over the world. This Monkeypox virus consumes an incubation period of five to twenty-one days and can be communicated through direct contact, breathing, contaminated towels, bedding, and so on. The Orthopoxvirus variety is a subfamily of the Poxviridae family that incorporates the Monkeypox infection. Their unique property is to suppress the host defense system and to exploit host immunity. Treatment of Monkeypox involves two vaccines named JYNNEOSTM and ACAM2000. Antiviral medications can be considered for serious diseases, immunocompromised patients, pediatrics, pregnant and lactating ladies, complex sores, and when injuries happen close to the mouth, eyes, and privates. This review article gives a basic information ofA48R, a thymidine kinase, which is involved in DNA replication pathways in the Monkeypox virus. The potential drugs for A48R inhibition like NMCT and rutaecarpine are considered good synthetic drugs. The maximum affinity -18 was shown by phytochemical dictamnine, amentoflavone -7.5, citral -7.8, and naringin – 6.6 which can be isolated from different plants.  The purpose of this review article is to describe variations in genomic epidemiology and in-silico screening of potential phytochemicals to cure Monkeypox.

Keywords: Monkeypox virus; Orthopoxvirus; Poxviridae; A48R; Phytochemicals 

Full Text:



Shchelkunov S, Totmenin A, Safronov P, Mikheev M, Gutorov V, et al. Analysis of the monkeypox virus genome. Virology, (2002); 297(2): 172-194.

Isidro J, Borges V, Pinto M, Sobral D, Santos JD, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of Monkeypox virus. Nature Medicine, (2022); 28(8): 1569-1572.

Nitsche A, Ellerbrok H, Pauli G. Detection of orthopoxvirus DNA by real-time PCR and identification of variola virus DNA by melting analysis. Journal of Clinical Microbiology, (2004); 42(3): 1207-1213.

Alkhalil A, Hammamieh R, Hardick J, Ichou MA, Jett M, et al. Gene expression profiling of Monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virology Journal, (2010); 71-19.

Claro IM, Romano CM, Candido DdS, Lima ELd, Lindoso JAL, et al. Shotgun metagenomic sequencing of the first case of Monkeypox virus in Brazil, 2022. Revista do Instituto de Medicina Tropical de São Paulo, (2022); 64.

Hraib M, Jouni S, Albitar MM, Alaidi S, Alshehabi Z. The outbreak of Monkeypox 2022: An overview. Annals of Medicine and Surgery, (2022); 104069.

Perez Duque M, Ribeiro S, Martins JV, Casaca P, Leite PP, et al. Ongoing Monkeypox virus outbreak, Portugal, 29 April to 23 May 2022. Eurosurveillance, (2022); 27(22): 2200424.

Adler H, Gould S, Hine P, Snell LB, Wong W, et al. Clinical features and management of human Monkeypox: a retrospective observational study in the UK. The Lancet Infectious Diseases, (2022); 22(8): 1153-1162.

Lam HYI, Guan JS, Mu Y. In silico repurposed drugs against Monkeypox virus. Molecules, (2022); 27(16): 5277.

Bragazzi NL, Kong JD, Mahroum N, Tsigalou C, Khamisy‐Farah R, et al. Epidemiological trends and clinical features of the ongoing Monkeypox epidemic: A preliminary pooled data analysis and literature review. Journal of Medical Virology, (2023); 95(1): e27931.

Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, et al. The changing epidemiology of human Monkeypox—A potential threat? A systematic review. PLoS neglected tropical diseases, (2022); 16(2): e0010141.

Farahat RA, Abdelaal A, Shah J, Ghozy S, Sah R, et al. Monkeypox outbreaks during COVID-19 pandemic: are we looking at an independent phenomenon or an overlapping pandemic? Annals of Clinical Microbiology and Antimicrobials, (2022); 21(1): 26.

Minhaj FS, Ogale YP, Whitehill F, Schultz J, Foote M, et al. (2022) Monkeypox outbreak—Nine states, May 2022: Weekly/June 10, 2022/71 (23); 764–769. Wiley Online Library.

O’Shea J. Interim guidance for prevention and treatment of Monkeypox in persons with HIV infection—United States, August 2022. MMWR Morbidity and Mortality Weekly Report, (2022); 71.

Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and treatment of Monkeypox. Drugs, (2022); 82(9): 957-963.

Girometti N, Byrne R, Bracchi M, Heskin J, McOwan A, et al. Demographic and clinical characteristics of confirmed human Monkeypox virus cases in individuals attending a sexual health centre in London, UK: an observational analysis. The Lancet Infectious Diseases, (2022); 22(9): 1321-1328.

Sherwat A, Brooks JT, Birnkrant D, Kim P. Tecovirimat and the treatment of Monkeypox—past, present, and future considerations. New England Journal of Medicine, (2022); 387(7): 579-581.

Karem KL, Reynolds M, Braden Z, Lou G, Bernard N, et al. Characterization of acute-phase humoral immunity to Monkeypox: use of immunoglobulin M enzyme-linked immunosorbent assay for detection of Monkeypox infection during the 2003 North American outbreak. Clinical and Vaccine Immunology, (2005); 12(7): 867-872.

Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, et al. Monkeypox virus infection in humans across 16 countries—April–June 2022. New England Journal of Medicine, (2022); 387(8): 679-691.

Titanji BK, Tegomoh B, Nematollahi S, Konomos M, Kulkarni PA. Monkeypox: a contemporary review for healthcare professionals; 2022. Oxford University Press. pp. ofac310.

Russo AT, Grosenbach DW, Chinsangaram J, Honeychurch KM, Long PG, et al. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert review of anti-infective therapy, (2021); 19(3): 331-344.

Gountia IA, Mati P. Monkeypox: A ambient review of transmission, improving care and treatments. Int Res J Modern Eng Technol Sci, (2022); 4(07): July-2022.

Khuroo MS, Khuroo M, Khuroo MS, Sofi AA, Khuroo NS. COVID-19 vaccines: a race against time in the middle of death and devastation! Journal of clinical and experimental hepatology, (2020); 10(6): 610-621.


  • There are currently no refbacks.