Prognostically Significant Fusion Oncogenes and Gene Mutations in Pakistani AML Patients
Abstract
Background: The onset and progression of leukemia is associated with many genetic abnormalities including gene mutations and production of fusion oncogenes. Molecular studies on fusion oncogenes and mutations in different populations have been done. However, not much research on correlation of the fusion oncogenes with acute myeloid leukemia have been done in Pakistan.
Methods: Genetic analysis of 105 AML patients was done to investigate AML1-ETOand CBFB-MYH11 fusion oncogenes and mutations in NPM1 and NRAS genes. The genomic DNA and cDNA were subjected to amplification, electrophoresis, and Sanger sequencing.
Results: The frequency of AML1-ETO was 26% in AML patients and 34.2% in AML-M2 patients. CBFB-MYH11 was present in 11.4% AML patients. A total of six mutations in 4 regions of NPM1 gene and 2 regions of NRAS gene were detected. 3’UTR of NPMI gene had three variants; g.1128C>T (57.1%), g.1185-/T insertion (80.95%), and g.1163A>T (57.14%) while c.867_871subGTGGA >CAAGTTTGC (2.86%) was present in exon 12. NRAS gene had two mutations c.12C>T (51.4%) and c.33A>T (11.43%) in exon 2. c.867_871subGTGGA >CAAGTTTGC , and g.1163A>T in NPM1 gene and c.33A>T in NRAS gene were the novel findings in this ethnic population.
Conclusion: This genetic analysis may help to modulate the treatment strategies and improve survival of patients.
Keywords: Acute Myeloid Leukemia; Fusion Oncogenes; AML; AML1-ETO; CBFB-MYH11; AML-M2; Nucleophosmin, NPM1; NRAS
Full Text:
PDFReferences
Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood, The Journal of the American Society of Hematology, (2010); 115(3): 453-474.
Gorombei P, Guidez F, Ganesan S, Chiquet M, Pellagatti A, et al. BCL-2 Inhibitor ABT-737 Effectively Targets Leukemia-Initiating Cells with Differential Regulation of Relevant Genes Leading to Extended Survival in a NRAS/BCL-2 Mouse Model of High Risk-Myelodysplastic Syndrome. International journal of molecular sciences, (2021); 22(19): 10658.
Iqbal Z, Aleem A, Iqbal M, Naqvi MI, Gill A, et al. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era. PLoS One, (2013); 8(2): e55717.
Bhatia S, Sather HN, Heerema NA, Trigg ME, Gaynon PS, et al. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood, The Journal of the American Society of Hematology, (2002); 100(6): 1957-1964.
Leith CP, Kopecky KJ, Chen I-M, Eijdems L, Slovak ML, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia. A Southwest Oncology Group Study. Blood, The Journal of the American Society of Hematology, (1999); 94(3): 1086-1099.
Kelly LM, Yu J-C, Boulton CL, Apatira M, Li J, et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer cell, (2002); 1(5): 421-432.
Wilbanks AM, Mahajan S, Frank DA, Druker BJ, Gilliland DG, et al. TEL/PDGFßR fusion protein activates STAT1 and STAT5: A common mechanism for transformation by tyrosine kinase fusion proteins. Experimental hematology, (2000); 28(5): 584-593.
Yu J, Jiang PY, Sun H, Zhang X, Jiang Z, et al. Advances in targeted therapy for acute myeloid leukemia. Biomarker research, (2020); 8(1): 1-11.
Dutta R, Zhang TY, Köhnke T, Thomas D, Linde M, et al. Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. The Journal of clinical investigation, (2020); 130(4): 1843-1849.
Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, et al. ATRA resolves the differentiation block in t (15; 17) acute myeloid leukemia by restoring PU. 1 expression. Blood, (2006); 107(8): 3330-3338.
Sabir N, Iqbal Z, Aleem A, Awan T, Naeem T, et al. Prognostically significant fusion oncogenes in Pakistani patients with adult acute lymphoblastic leukemia and their association with disease biology and outcome. Asian Pacific Journal of Cancer Prevention, (2012); 13(7).
Iqbal J, Kucuk C, Deleeuw R, Srivastava G, Tam W, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia, (2009); 23(6): 1139-1151.
Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. New England Journal of Medicine, (2015); 373(12): 1136-1152.
Ernst P, Wang J, Korsmeyer SJ. The role of MLL in hematopoiesis and leukemia. Current opinion in hematology, (2002); 9(4): 282-287.
Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nature Reviews Cancer, (2003); 3(9): 650-665.
Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nature Reviews Cancer, (2006); 6(7): 493-505.
Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, (2007); 7(4): 295-308.
Haferlach T. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. ASH Education Program Book, (2008); 2008(1): 400-411.
Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood, (2006); 107(5): 1791-1799.
Kurata K, Yamamoto K, Okazaki Y, Noguchi Y, Matsui K, et al. Detection of a novel CBFB-MYH11 fusion transcript in acute myeloid leukemia M1 with inv (16)(p13q22). Cancer Genetics, (2020); 24172-76.
Yohe, S. (2015). Molecular genetic markers in acute myeloid leukemia. Journal of clinical medicine, 4(3), 460-478. https://doi.org/10.3390/jcm4030460
Blau, O. (2015). Gene mutations in acute myeloid leukemia-incidence, prognostic influence, and association with other molecular markers. Leukemias-Updates and New Insights. Croatia: Intech Open, 75-100. http://dx.doi.org/10.5772/6092823.
Wu, M. H., & Yung, B. Y. (2002). UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. Journal of Biological Chemistry, 277(50), 48234-48240. https://doi.org/10.1074/jbc.M206550200
Karimi Dermani, F., Gholamzadeh Khoei, S., Afshar, S., & Amini, R. (2021). The potential role of nucleophosmin (NPM1) in the development of cancer. Journal of cellular physiology, 236(11), 7832-7852.
Khanolkar, R. A., Faridi, R. M., Kinzel, M., Jamani, K., Savoie, M. L., Shafey, M., . . . Storek, J. (2022). Impact of FLT3 internal tandem duplication and NPM1 mutations in acute myeloid leukemia treated with allogeneic hematopoietic cell transplantation. Cytotherapy, 24(4), 413-420.
Sakaguchi, M., Yamaguchi, H., Najima, Y., Usuki, K., Ueki, T., Oh, I., . . . Kobayashi, Y. (2018). Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood advances, 2(20), 2744-2754.
Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. (2007).
Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Chapter: Book Name. 2008 of publication; 2; International agency for research on cancer Lyon.
Chomczynski P, Mackey K, Drews R, Wilfinger W. DNAzol®: a reagent for the rapid isolation of genomic DNA. Biotechniques, (1997); 22(3): 550-553.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry, (1987); 162(1): 156-159.
Liedtke W, Battistini L, Brosnan C, Raine C. A comparison of methods for RNA extraction from lymphocytes for RT-PCR. Genome Research, (1994); 4(3): 185-187.
Ariffin H, Chen S-P, Kwok CS, Quah T-C, Lin H-P, et al. Ethnic differences in the frequency of subtypes of childhood acute lymphoblastic leukemia: results of the Malaysia-Singapore Leukemia Study Group. Journal of pediatric hematology/oncology, (2007); 29(1): 27-31.
Jiménez-Morales S, Hidalgo-Miranda A, Ramírez-Bello J. Acute lymphoblastic leukemia: a genomic perspective. Boletín Médico Del Hospital Infantil de México (English Edition), (2017); 74(1): 13-26.
Osman D, Gobert V, Ponthan F, Heidenreich O, Haenlin M, et al. A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proceedings of the National Academy of Sciences, (2009); 106(29): 12043-12048.
Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood, (2006); 107(10): 4011-4020.
DiNardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematology 2014, the American Society of Hematology Education Program Book, (2016); 2016(1): 348-355.
Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. leukemia, (2008); 22(5): 915-931.
Balatzenko G, Spassov B, Stoyanov N, Ganeva P, Dikov T, et al. NPM1 gene type A mutation in Bulgarian adults with acute myeloid leukemia: a single-institution study. Turkish Journal of Hematology, (2014); 31(1): 40.
Bhattacharyya J, Nath S, Saikia KK, Saxena R, Sazawal S, et al. Prevalence and clinical significance of FLT3 and NPM1 mutations in acute myeloid leukaemia patients of Assam, India. Indian Journal of Hematology and Blood Transfusion, (2018); 34(1): 32-42.
Su L, Gao SJ, Li W, Tan YH, Cui JW, et al. NPM1, FLT3-ITD, CEBPA, and c-kit mutations in 312 Chinese patients with de novo acute myeloid leukemia. Hematology, (2014); 19(6): 324-328.
Boonthimat C, Thongnoppakhun W, Auewarakul CU. Nucleophosmin mutation in Southeast Asian acute myeloid leukemia: eight novel variants, FLT3 coexistence and prognostic impact of NPM1/FLT3 mutations. haematologica, (2008); 93(10): 1565-1569.
Marshall R, Tlagadi A, Bronze M, Kana V, Naidoo S, et al. Lower frequency of NPM 1 and FLT 3-ITD mutations in a South African adult de novo AML cohort. International journal of laboratory hematology, (2014); 36(6): 656-664.
Zidan M, Shaaban H, El Ghannam D. Prognostic impact of nucleophosmin 1 (NPM1) gene mutations in Egyptian acute myeloid leukemia patients. Turkish Journal of Hematology, (2013); 30(2): 129.
Yi H, Zeng D, Shen Z, Liao J, Wang X, et al. Integrin alphavbeta3 enhances ß-catenin signaling in acute myeloid leukemia harboring Fms-like tyrosine kinase-3 internal tandem duplication mutations: implications for microenvironment influence on sorafenib sensitivity. Oncotarget, (2016); 7(26): 40387.
Chauhan PS, Ihsan R, Singh LC, Gupta DK, Mittal V, et al. Mutation of NPM1 and FLT3 genes in acute myeloid leukemia and their association with clinical and immunophenotypic features. Dis Markers, (2013); 35(5): 581-588.
Kern W, Haferlach C, Bacher U, Haferlach T, Schnittger S. Flow cytometric identification of acute myeloid leukemia with limited differentiation and NPM1 type A mutation: a new biologically defined entity. Leukemia, (2009); 23(7): 1361-1364.
Jarell AD, Lawrence D, Tsao H. The RAS/mitogen activated protein (MAP) kinase pathway in melanoma biology and therapeutics. Biologics, (2007); 1(4): 407-414.
Olga B (2015) Gene Mutations in Acute Myeloid Leukemia — Incidence, Prognostic Influence, and Association with Other Molecular Markers. In: Margarita G, Gueorgui B, editors. Leukemias. Rijeka: IntechOpen. pp. Ch. 4.
Dunna NR, Vuree S, Anuradha C, Sailaja K, Surekha D, et al. NRAS mutations in de novo acute leukemia: prevalence and clinical significance. Indian J Biochem Biophys, (2014); 51(3): 207-210.
Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood, (2006); 107(10): 3847-3853.
Irahara N, Baba Y, Nosho K, Shima K, Yan L, et al. NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol, (2010); 19(3): 157-163.
Akram AM, Chaudhary A, Kausar H, Althobaiti F, Abbas AS, et al. Analysis of RAS gene mutations in cytogenetically normal de novo acute myeloid leukemia patients reveals some novel alterations. Saudi J Biol Sci, (2021); 28(7): 3735-3740.
De Melo MB, Lorand-Metze I, Lima CS, Saad ST, Costa FF. N-ras gene point mutations in Brazilian acute myelogenous leukemia patients correlate with a poor prognosis. Leuk Lymphoma, (1997); 24(3-4): 309-317.
Yang X, Qian J, Sun A, Lin J, Xiao G, et al. RAS mutation analysis in a large cohort of Chinese patients with acute myeloid leukemia. Clin Biochem, (2013); 46(7-8): 579-583.
Olsen C, Qaadri K, Moir R, Kearse M, Buxton S, Cheung M. Geneious R7: a bioinformatics platform for biologists. InInternational plant and animal genome conference Xxii 2014.
DOI: http://dx.doi.org/10.62940/als.v10i1.1597
Refbacks
- There are currently no refbacks.