Plausible inhibitors of malaria parasite Plasmodium falciparum 3D7 ATP-dependent DNA helicase

Mohammad Othman Alkurbi

Abstract


Background: Plasmodium falciparum is a  parasite (protozoa) of humans, & the lethal species of Plasmodium that affects malaria in humans. In the lack of a medically validated malaria vaccine, nearby are merely a few inexpensive medications available for therapy. Studies of diverse enzymes used in pharmaceutical drug discovery become essential aspects. The theoretical analysis helps to screen novel drug candidates.

Methods: Here we have optimized three biologically active compounds, netropsin, nogalamycin, and novobiocin, and also carried out a molecular docking study with the protein ATP-dependent DNA helicase (UvrD) Plasmodium falciparum 3D7.

Results: The plasmoDB id of the designated protein is PF3D7-0514100. Our calculations show that netropsin, nogalamycin, and novobiocin can have an affinity with the Plasmodium falciparum.

Conclusion: Our study also predicted that novobiocin would give a better result with this protein than netropsin and nogalamycin. The frontier molecular orbitals & electrostatic potential (MEP) maps also support the higher activity of the novobiocin compound.


Full Text:

PDF

References


Snow RW, Guerra CA, ANoor AM, Myint HY, Hay SI. The Global Distribution of Clinical Episodes of Plasmodium falciparum Malaria. Nature, (2005); 434 (7030): 214-7.

Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, et al. Nature, (2002); 419 (6906): 512-9.

Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. Genome Sequence of the Human Malaria Parasite Plasmodium falciparum. Nature, (2002); 419 (6906); 498-511.

Tuteja R. Helicases: Feasible Anti-malarial Drug Target for Plasmodium falciparum. FEBS J, (2007); 274 (18): 4699-704.

Mehta J, and Tuteja R. A Novel Dual Dbp5/DDX19 Homologue from Plasmodium falciparum Requires Q motif for Activity. Mol. Biochem. Parasitol, (2011); 176 (1): 58-63.

White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature, (1998); 391 (6666): 468.

Chenoweth DM, Harki DA, Phillips JW, Dose C, Dervan PB. Cyclic pyrrole-imidazole polyamides targeted to the androgen response element. J. Am. Chem. Soc., (2009); 131 (20): 7182-7188.

Schneider S, Keller S, Wolter FE, Röglin L, Beil W, et al. Proximicins A, B, and C-antitumor furan analogues of netropsin from the marine actinomycete Verrucosispora induce upregulation of p53 and the cyclin kinase inhibitor p21. Angew. Chem. Int. Ed., (2008), 47 (17): 3258-3261.

Zimmer C, Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Molec. Biol., (1986); 47 (1): 31-112.

Finlay AC, Hochstein FA, Sobin BA, Murphy FX. Netropsin, a New Antibiotic Produced by a Streptomyces. J. Am. Chem. Soc., (1951); 73 (24): 341-343.

Boger DL, Fink BE, Hedrick MP. Total Synthesis of Distamycin A and 2640 Analogues: A Solution-Phase Combinatorial Approach to the Discovery of New, Bioactive DNA Binding Agents and Development of a Rapid, High-Throughput Screen for Determining Relative DNA Binding Affinity or DNA Binding Sequence Selectivity. J. Am. Chem. Soc., (2000); 122 (27): 6382-6394.

Neidle S. DNA minor-groove recognition by small molecules. Natural Product Reports, (2001); 18 (3): 291-309.

Lewis EA, Munde M, Wang S, Rettig M, Le, V Machha V, Wilson WD. Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site. Nucleic Acids Res., (2011); 39 (22): 9649-9658.

Freyer MW, Buscaglia R, Nguyen B, Wilson WD, Lewis EA. Binding of netropsin and 4,6-diamidino-2-phenylindole to an A2T2 DNA hairpin: A comparison of biophysical techniques. Anal. Biochem., (2006); 355(2): 259-266.

Lah J, Drobnak I, Dolinar M, Vesnaver G. What drives the binding of minor groove-directed ligands to DNA hairpins? Nucleic Acids Res., (2008); 36 (3): 897-904.

Ramos JP, Le VH, Lewis EA. Role of Water in Netropsin Binding to an A2T2 Hairpin DNA Site: Osmotic Stress Experiments. J. Phys. Chem. B, (2013): 117 (50): 15958-15965.

Goodwin KD, Long EC, Georgiadis MM. A host–guest approach for determining drug–DNA interactions: an example using netropsin Nucleic Acids Res., (2005); 33 (13): 4106-4116.

Hecke KV, Nam PC, Nguyen MT, Meervelt LV. Netropsin interactions in the minor groove of d(GGCCAATTGG) studied by a combination of resolution enhancement and ab initio calculations. FEBS J., (2005); 272 (14): 3531-3541.

Freyer MW, Buscaglia R, Cashman D, Hyslop S,Wilson WD, Chaires JB, Lewis EA. DNA conformational effects on the interaction of netropsin with A-tract sequences. Biophys. Chem., (2007); 126 (1-3): 186-196.

Wang JC. DNA topoisomerases. Ann. Rev. Biochem., (1985); 54, 665-697.

Reece RJ, Maxwell A. DNA gyrase: structure and function. Crit.Rev. Biochem. Mol. Biol., (1991); 26 (3-4): 335-375.

Sugino A, Cozzarelli NR. The intrinsic ATPase of DNA gyrase. J.Biol. Chem., (1980); 255 (13):6299-6306.

Sugino A, Higgins NP, Brown PO, Peebles CL, Cozzarelli NR. Energy Coupling in Dna Gyrase and The Mechanism of Action of Novobiocin. Proc. Natl Acad. Sci., (1978): 75 (10): 4838-4842.

Staudenbauer WL, Orr E. DNA Gyrase: Affinity Chromatography on Novobiocin-Sepharose and Catalytic Properties. Nucleic Acids Res., (1981); 9 (15): 3589- 3603.

Nakada N, Gmuender H, Hirata T, Arisawa M. Mechanism of Inhibition of DNA Gyrase by Cyclothialidine, A Novel DNA Gyrase Inhibitor. Antimicrob. Agents Chemother., (1994); 38 (9): 1966-1 973.

Kuo MS, Yurek DA, Chirby DG, Cialdella J, Marshall VP. Microbial 0-carbamoylation of novobiocin. J. Antibiof., (1991); 44 (10): 1096-1100.

Thiara AS, Cundliffe E. Expression and analysis of 2 gyr8 genes from the novobiocin producer, Streptomyces sphaeroides. Moi. Microbioi., (1993); 8 (3): 495-506.

Bhuyan BK, Dietz A. Fermentation, taxonomic, and biological studies on nogalamycin. Antimicrob. Agents Chemother., (1965); 5, 836 – 844.

Wiley PF, Johnson JL, Houser DJ. Nogalamycin analogs having improved antitumor activity. J. Antibiot., (1977); 30 (7): 628-629.

Nogalamycin. ChemicalBook.com. Accessed November 28, 2012.

Metsä-Ketelä M, Niemi J, Mäntsälä P, Schneider in Topics in Current Chemistry, Anthracycline Chemistry and Biology I: Biological Occurence and Biosynthesis, Synthesis and Chemistry, (Ed.:Krohn K), Springer-Verlag, Berlin/Heidelberg (2008); 282 101–140.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian 16, Revision C.01; Wallingford CT, USA, 2016.

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., (2008); 120 (1-3): 215-241.

McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys., (1980); 72, 5639-5648.

Krishnan R, Binkley JS, Seeger R Pople JA. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J. Chem. Phys., (1980); 72, 650-654.

Trott O, Olson AJ, Vina A. Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem., (2010); 31 (2): 455-461.

Roy A, Kucukural A, Zhang Y. I-TASSER: A Unified Platform for Automated Protein Structure and Punction Prediction. Nat Protoc., (2010); 5 (4):725-738.

Jakubec D, Skoda P, Krivak R, Novotny M, Hoksza D, PrankWeb 3: Accelerated Ligand-Binding Site Predictions for Experimental and Modelled Protein Structures, Nucleic Acids Res., (2022); 50 (W1): W593-W597.

BIOVIASystemes, Dassault. [BIOVIA Discovery Studio]. San Diego: Dassault Systemes. (2021).




DOI: http://dx.doi.org/10.62940/als.v10i4.2222

Refbacks

  • There are currently no refbacks.