Chemical Profiling and Pharmaceutical and Biological Activities of Methanolic Extract of Citrullus colocynthis L. Seeds Collected from the Arid Zone of Qassim, Saudi Arabia against Aphis craccivora

Emad M. Abdallah, Ahmed M. H. Ali, Hanaa Fadl Hashem, Adil A. Mujawah, Eman R. Elsharkawy

Abstract


Background: Citrullus colocynthis L. (C. colocynthis) is a medicinal plant with a long history of traditional usage in Saudi Arabia, particularly for the treatment of digestive issues such as indigestion and stomach pain.

Methods: C. colocynthis seeds were examined using qualitative and quantitative phytochemical methods. Antioxidant testing was conducted using DPPH assay and the reducing power test. Antibacterial properties were evaluated using the well-diffusion test, minimum inhibitory concentration (MIC) test, and minimum bactericidal concentration (MBC) test. The effectiveness of the extract against Aphis craccivora (A. craccivora) was assessed using a leaf-dip bioassay, measuring generation time (GT), net reproduction rate (R0), intrinsic rate of increase (rm), doubling time (DT), and finite rate of growth (λ).

Results: The methanolic extract of C. colocynthis seeds included diverse bioactive compounds, a good quantity of phenolic content (60.45 mg GAE/g) and flavonoid content (46.66 mg/g). The antibacterial tests showed that the extract was effective only against Staphylococcus aureus and Proteus mirabilis. The extract recorded inhibition zones of 14.5 ± 0.7 mm and 10.5 ± 0.5 mm for Staphylococcus aureus and Proteus mirabilis, respectively. Staphylococcus aureus showed the greatest sensitivity, with MIC of 6.25 mg/mL and MBC of 25.0 mg/mL. The extract was found to have a fatal concentration (LC50) of 9.02% and a lethal concentration (LC95) of 20.50% against A. craccivora aphid.

Conclusions: The current vitro study on C. colocynthis reported that the seeds are effective as antioxidants, antibacterial agents (only against Gram-positive bacteria), and aphicidal agents against aphids. More investigations are recommended to examine the possible toxicity and biochemical interactions in vivo.

Keywords: Plants; Biological activity; In vitro study; Citrullus colocynthisAphis craccivora; Aphicidal 


Full Text:

PDF

References


Abdallah EM. Plants: An alternative source for antimicrobials. Journal of Applied Pharmaceutical Science, (2011); (Issue): 16-20.

Cowan MM. Plant products as antimicrobial agents. Clinical microbiology reviews, (1999); 12(4): 564-582.

Khan K, Jan G, Irfan M, Jan FG, Hamayun M, et al. Ethnoveterinary use of medicinal plants among the tribal populations of District Malakand, Khyber Pakhtunkhwa, Pakistan. Ethnobotany Research and Applications, (2023); 251-24.

Shakya AK. Medicinal plants: Future source of new drugs. International journal of herbal medicine, (2016); 4(4): 59-64.

Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants, (2023); 12(17): 3077.

Arif T, Bhosale J, Kumar N, Mandal T, Bendre R, et al. Natural products–antifungal agents derived from plants. Journal of Asian natural products research, (2009); 11(7): 621-638.

Gupta VK, Sharma SK. Plants as natural antioxidants. (2006).

Krinski D, Massaroli A, Machado M. Insecticidal potential of the Annonaceae family plants. Revista Brasileira de Fruticultura, (2014); 225-242.

Solomon SL, Oliver KB. Antibiotic resistance threats in the United States: stepping back from the brink. American family physician, (2014); 89(12): 938-941.

Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, (2015); 40(4): 277.

Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in microbiology, (2010); 1134.

Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature, (2016); 529(7586): 336-343.

Palma JM, Seiquer I (2020) To be or not to be… an antioxidant? That is the question. MDPI. pp. 1234.

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, et al. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity, (2017); 2017.

Mocko K. Antioxidant activity of selected plant products. Journal of microbiology, biotechnology and food sciences, (2013); 2(special issue 1): 1692-1703.

Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol, (2006); 5145-66.

Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, et al. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, (2021); 26(16): 4835.

Rajendran S, Sriranjini V. Plant products as fumigants for stored-product insect control. Journal of stored products Research, (2008); 44(2): 126-135.

Ware GW, Whitacre DM. An introduction to insecticides. The pesticide book, (2004); 6.

AL-Ahmadi MS (2019) Pesticides, anthropogenic activities, and the health of our environment safety. Pesticides-use and misuse and their impact in the environment: IntechOpen.

Moustafa MA, Awad M, Amer A, Hassan NN, Ibrahim E-DS, et al. Insecticidal activity of lemongrass essential oil as an eco-friendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects, (2021); 12(08): 737.

Lin M, Bi X, Zhou L, Huang J. Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules, and Activities: Part II (Cipadessa, Melia). International Journal of Molecular Sciences, (2022); 23(10): 5329.

Pan L, Ren L, Chen F, Feng Y, Luo Y. Antifeedant activity of Ginkgo biloba secondary metabolites against Hyphantria cunea larvae: mechanisms and applications. PLoS One, (2016); 11(5): e0155682.

Kamphuis LG, Gao L, Singh KB. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Plant Biology, (2012); 121-12.

Brady CM, White JA. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecological Entomology, (2013); 38(4): 433-437.

Laamari M, Khelfa L, d’Acier AC. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. African journal of biotechnology, (2008); 7(14).

da Silva EM, Roel ARRR, Porto KRA, Falco MEFE, Matias RM. Insecticidal effect of the ethanol extract of Baccharis dracunculifolia (Asterales: Asteraceae). Revista de Biología Tropical, (2017); 65(2): 517-523.

Bedini S, Guarino S, Echeverria MC, Flamini G, Ascrizzi R, et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: A spiced shield against blowflies. Insects, (2020); 11(3): 143.

Rao V, Poonia A. Citrullus colocynthis (bitter apple): bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: a review. Food Production, Processing and Nutrition, (2023); 5(1): 4.

da Silva JAT, Hussain AI. Citrullus colocynthis (L.) Schrad.(colocynth): Biotechnological perspectives. Emirates Journal of Food and Agriculture, (2017); 83-90.

Al-Nablsi S, El-Keblawy A, Ali MA, Mosa KA, Hamoda AM, et al. Phenolic contents and antioxidant activity of Citrullus colocynthis fruits, growing in the hot arid desert of the UAE, influenced by the fruit parts, accessions, and seasons of fruit collection. Antioxidants, (2022); 11(4): 656.

Rahimi R, Abdollahi M. Herbal medicines for the management of irritable bowel syndrome: a comprehensive review. World journal of gastroenterology: WJG, (2012); 18(7): 589.

Li Q-Y, Munawar M, Saeed M, Shen J-Q, Khan MS, et al. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising traditional uses, pharmacological effects, aspects, and potential applications. Frontiers in Pharmacology, (2022); 123848.

Pashmforosh M, Rajabi Vardanjani H, Rajabi Vardanjani H, Pashmforosh M, Khodayar MJ. Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in rats. Medicina, (2018); 54(4): 51.

Shawkey AM, Rabeh MA, Abdulall AK, Abdellatif AO. Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv Life Sci Technol, (2013); 1360-70.

Sowayan A, Allayla R. Origin of the Saline Ground Water in Wadi Ar‐Rumah, Saudi Arabia. Groundwater, (1989); 27(4): 481-490.

Abdallah EM, Mujawah A, Al Mijalli SH. GC-MS and antibacterial potential of methanolic extract hyphaene thebaica L fruit pulp against antibiotics-resistant pathogens. Journal of Pure and Applied Microbiology, (2021); 15(3): 1655-1664.

Al Ghasham A, Al Muzaini M, Qureshi KA, Elhassan GO, Khan RA, et al. Phytochemical Screening, Antioxidant and Antimicrobial Activities of Methanolic Extract of Ziziphus mauritiana Lam. Leaves Collected from Unaizah, Saudi Arabia. International Journal of Pharmaceutical Research & Allied Sciences, (2017); 6(3).

Abdallah EM. Screening of methanolic extract for antimicrobial activity of Hyphaene thebaica L. fruit pulp from Sudanese folklore. South Asian J Res Microbiol, (2021); 96-12.

Sulieman AME, Alanaizy E, Alanaizy NA, Abdallah EM, Idriss H, et al. Unveiling Chemical, Antioxidant and Antibacterial Properties of Fagonia indica Grown in the Hail Mountains, Saudi Arabia. Plants, (2023); 12(6): 1354.

Blainski A, Lopes GC, De Mello JCP. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, (2013); 18(6): 6852-6865.

Sharma K, Ko EY, Assefa AD, Ha S, Nile SH, et al. Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. Journal of food and drug analysis, (2015); 23(2): 243-252.

Elsharkawy ER, Abdallah EM, Shiboob MH, Alghanem S. Phytochemical, antioxidant and antibacterial potential of Ducrosia anethifolia in northern border region of Saudi Arabia. Journal of Pharmaceutical Research International, (2019); 31(6): 1-8.

Akinpelu B, Godwin A, Gbadegesin T, Ajakaye N, Omotosho S, et al. Comparative studies on anti-inflammatory, antioxidant and antimutagenic activities of Crassocephalum crepidioides (Bent) leaf cold and hot water extracts. Asian Food Science Journal, (2019); 9(1): 1-12.

ALrajhi M, Al-Rasheedi M, Eltom SEM, Alhazmi Y, Mustafa MM, et al. Antibacterial activity of date palm cake extracts (Phoenix dactylifera). Cogent Food & Agriculture, (2019); 5(1): 1625479.

Benariba N, Djaziri R, Bellakhdar W, Belkacem N, Kadiata M, et al. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pacific journal of tropical biomedicine, (2013); 3(1): 35-40.

Ambi A, Abdurrahman E, Sule M, Pateh U, Abdurrahman Y, et al. Phytochemical screening and histopathological studies on the seeds of Colocynthis citrullus in albino rats. Nigerian journal of pharmaceutical sciences, (2007); 6(2): 7-13.

Kumar S, Yadav A, Yadav M, Yadav JP. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm. f. BMC research notes, (2017); 10(1): 1-12.

Ahmed M, Ji M, Qin P, Gu Z, Liu Y, et al. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Applied Ecology & Environmental Research, (2019); 17(3).

Kumar S, Kumar D, Saroha K, Singh N, Vashishta B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharmaceutica, (2008); 58(2): 215-220.

Hussain AI, Rathore HA, Sattar MZ, Chatha SA, ud din Ahmad F, et al. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Industrial crops and products, (2013); 45416-422.

Rezaie Keikhaie K, Ghorbani S, Hosseinzadeh Z, Hassanshahian M. Antimicrobial activity of methanol extract of Citrullus colocynthis against antibiotic-resistant Staphylococcus aureus. Future Natural Products, (2018); 4(3): 64-72.

Mehta A, Srivastva G, Kachhwaha S, Sharma M, Kothari S. Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. Journal of ethnopharmacology, (2013); 149(1): 195-200.

Delazar A, Gibbons S, Kosari AR, Nazemiyeh H, Modarresi M, et al. Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis. DARU Journal of Pharmaceutical Sciences, (2006); 14(3): 109-114.

Seenivasan S, Jayakumar M, Raja N, Ignacimuthu S. Effect of bitter apple, Citrullus colocynthis (L.) Schrad seed extracts against pulse beetle, Callosobruchus maculatus Fab.(Coleoptera: Bruchidae). ENTOMON-

TRIVANDRUM-, (2004); 2981-84.

Kamel AM, El-Gengaihi SE. Is there a relationship between the level of plant metabolites in cucumber and globe cucumber and the degree of insect infestation? Notulae Botanicae Horti Agrobotanici Cluj-Napoca, (2009); 37(1): 144-156.

Yousaf HK, Shan T, Chen X, Ma K, Shi X, et al. Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Scientific reports, (2018); 8(1): 16473.

Ibrahim HY. CHARACTERIZATION OF CHEMICAL CONSTITUENTS OF Citrullus colocynthis (L.) EXTRACTS AND THEIR RELATION TO TOXICITY AGAINST COWPEA APHID, Aphis Craccivora Koch. Journal of Plant Protection and Pathology, (2015); 6(10): 1323-1336.

Sayeda FF, Torkey H, Hala M. Natural extracts and their chemical constituents in relation to toxicity against whitefly (Bemisia tabaci) and aphid (Aphis craccivora). Australian Journal of Basic and Applied Sciences, (2009); 3(4): 3217-3223.

Soliman M, Hassanein A, Abou-Yousef H. Efficiency of various wild plant extracts against the cotton aphid, Aphis gossypii Glov.(Aphididae: Homoptera). Acta Phytopathologica et Entomologica Hungarica, (2005); 40(1-2): 185-196.

Torkey H, Abou-Yousef H, Abdel Azeiz A, Hoda E. Insecticidal effect of cucurbitacin E glycoside isolated from Citrullus colocynthis against Aphis craccivora. Australian Journal of Basic and Applied Sciences, (2009); 3(4): 4060-4066.

Soam P, Singh T, Vijayvergia R. Short communication Citrullus colocynthis (Linn.) and Luffa acutangula (l.) Roxb, schrad. Source of bioinsecticides and their contribution in managing climate change. Int J Appl Biol Pharm Technol, (2013); 47777-780.

Mansour F, Azaizeh H, Saad B, Tadmor Y, Abo-Moch F, et al. The potential of middle eastern flora as a source of new safe bio-acaricides to control Tetranychus cinnabarinus, the carmine spider mite. Phytoparasitica, (2004); 3266-72.

Asiry KA. Aphidicidal activity of different aqueous extracts of bitter apple Citrullus colocynthis (L.) against the bird cherry-oat aphid, Rhopalosiphum padi (L.)(Homoptera: Aphididae) under laboratory conditions. JAPS: Journal of Animal & Plant Sciences, (2015); 25(2).

Gulzar A, Maqsood A, Munir A, Tariq M, Ali M, et al. Toxicity, antifeedant and sub-lethal effects of Citrullus colocynthis extracts on cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pakistan Journal of Zoology, (2017); 49(6).

Mullai K, Jebanesan A. Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitacious plants against filarial vector Culex quinquefasciatus (Say)(Diptera: Culicidae). Trop Biomed, (2007); 24(1): 1-6.




DOI: http://dx.doi.org/10.62940/als.v11i4.3135

Refbacks

  • There are currently no refbacks.