Alternative approaches for the treatment of Asthma and COPD: Focus on Cell-based therapies, Epigenetics, and Gene silencing approaches
Abstract
Despite many organized health initiatives and critically acclaimed guidelines for proper management of asthma therapy, there is still a large population of severe asthmatics having an uncontrolled disease. Severe persistent asthma, characterized by chronic airway inflammation, increased eosinophils and serum IgE is currently managed by using inhaled corticosteroids. It is quite challenging to get the best treatment guidelines for bronchial asthma in severe asthmatics, particularly in the presence of steroid resistance and the non-responsiveness to β-agonists. For that purpose, other methodologies are required to reverse the uncontrolled airway remodeling in steroid-resistant severe asthma. These advanced alternative approaches should be able to treat asthma symptoms and to improve the inflammatory conditions underlying characteristic pathological features of asthma. The current review focuses and summarizes the alternative approaches used in severe asthma patients. Agents targeting inflammatory cytokines, phosphodiesterase inhibitors, antibodies, oligonucleotides, stem cells, and target drug delivery using gene silencing, offer promise in treating severe asthma.
Keywords: Asthma; COPD; Therapies; Epigenetics; Gene silencing
Full Text:
PDFReferences
oulet LP, FitzGerald JM, Reddel HK. The revised 2014 GINA strategy report: opportunities for change. Current Opinion in Pulmonary Medicine, (2015); 21(1): 1-7.
Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, (2013); 187(4): 347-365.
Fricker M, Qin L, Niessen N, Baines KJ, McDonald VM, et al. Relationship of sputum mast cells with clinical and inflammatory characteristics of asthma. Clin Exp Allergy, (2020); 15(10): 13609.
Potaczek DP, Miethe S, Schindler V, Alhamdan F, Garn H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal, (2020); 69(109523): 2.
Bhalla A, Mukherjee M, Nair P. Airway Eosinophilopoietic and Autoimmune Mechanisms of Eosinophilia in Severe Asthma. Immunology and Allergy Clinics of North America, (2018); 38(4): 639-654.
EPR-3. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. Journal of Allergy and Clinical Immunology, (2007); 120(5 Suppl): S94-138.
Halwani R, Al-Muhsen S, Hamid Q. Airway remodeling in asthma. Current Opinion in Pharmacology, (2010); 10(3): 236-245.
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease
Study 2010. Lancet, (2012); 380(9859): 2095-2128.
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLOS Medicine, (2006); 3(11): 0030442.
Caramori G, Casolari P, Giuffre S, Barczyk A, Adcock I, et al. COPD pathology in the small airways. Panminerva Medica, (2011); 53(1): 51-70.
Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annual Review of Pathology, (2009); 4435-459.
Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. European Respiratory Society, (2003); 22(4): 672-688.
Hurst JR, Wedzicha JA. The biology of a chronic obstructive pulmonary disease exacerbation. Clinics in Chest Medicine, (2007); 28(3): 525-536.
Parker CM, Voduc N, Aaron SD, Webb KA, O'Donnell DE. Physiological changes during symptom recovery from moderate exacerbations of COPD. European Respiratory Society, (2005); 26(3): 420-428.
Tattersfield AE, Knox AJ, Britton JR, Hall IP. Asthma. Lancet, (2002); 360(9342): 1313-1322.
Larj MJ, Bleecker ER. Therapeutic responses in asthma and COPD. Corticosteroids. Chest, (2004); 126(2 Suppl): 138S-149S; 159S-161S.
Adcock IM, Chou PC, Durham A, Ford P. Overcoming steroid unresponsiveness in airways disease. Biochemical Society Transactions, (2009); 37(Pt 4): 824-829.
Johnson M. The beta-adrenoceptor. American Journal of Respiratory and Critical Care Medicine, (1998); 158(5 Pt 3).
Celli B, ZuWallack R, Wang S, Kesten S. Improvement in resting inspiratory capacity and hyperinflation with tiotropium in COPD patients with increased static lung volumes. Chest, (2003); 124(5): 1743-1748.
Walters JA, Gibson PG, Wood-Baker R, Hannay M, Walters EH. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev, (2009); 21(1).
Barnes PJ. Corticosteroid resistance in airway disease. Proceedings of the American Thoracic Society, (2004); 1(3): 264-268.
Chung KF, Adcock IM. Combination therapy of long-acting beta2-adrenoceptor agonists and corticosteroids for asthma. Treatments in Respiratory Medicine, (2004); 3(5): 279-289.
Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. American Journal of Respiratory and Critical Care Medicine, (2004); 170(8): 836-844.
Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. (2006) 26;368(9537):780-93.
Serra-Batlles J, Plaza V, Morejon E, Comella A, Brugues J. Costs of asthma according to the degree of severity. European Respiratory Society,
(1998); 12(6): 1322-1326.
Barnes PJ. Inhaled glucocorticoids for asthma. The New England Journal of Medicine, (1995); 332(13): 868-875.
Jochmann A, Neubauer F, Miedinger D, Schafroth S, Tamm M, et al. General practitioner's adherence to the COPD GOLD guidelines: baseline data of the Swiss COPD Cohort Study. Swiss Medical Weekly, (2010); 9(140): 1-4.
Suissa S, Barnes PJ. Inhaled corticosteroids in COPD: the case against. European Respiratory Journal. (2009) 34(1):13-6. doi: 10.1183/09031936.00190908.
Jebrak G. [COPD routine management in France: are guidelines used in clinical practice?]. Revue des Maladies Respiratoires, (2010); 27(1): 11-18.
Lucas AE, Smeenk FW, Smeele IJ, van Schayck CP. Overtreatment with inhaled corticosteroids and diagnostic problems in primary care patients, an exploratory study. Family Practice, (2008); 25(2): 86-91.
Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. American Journal of Respiratory and Critical Care Medicine, (2011); 184(6): 662-671.
Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. The Journal of Allergy and Clinical Immunology, (2013); 131(3): 636-645.
Bourbeau J, Christodoulopoulos P, Maltais F, Yamauchi Y, Olivenstein R, et al. Effect of salmeterol/ fluticasone propionate on airway inflammation in COPD: a randomised controlled trial. Thorax, (2007); 62(11): 938-943.
Roche N, Marthan R, Berger P, Chambellan A, Chanez P, et al. Beyond corticosteroids: future prospects in the management of inflammation in COPD. European Respiratory Review, (2011); 20(121): 175-182.
Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet, (2009); 373(9678): 1905-1917.
Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, et al. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, (1999); 160(5 Pt 1): 1635-1639.
Barnes PJ. Scientific rationale for inhaled combination therapy with long-acting beta2-agonists and corticosteroids. European Respiratory Journal, (2002); 19(1): 182-191.
Roth M, Johnson PR, Rudiger JJ, King GG, Ge Q, et al. Interaction between glucocorticoids and beta2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet, (2002); 360(9342): 1293-1299.
Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, (2000); 6(2): 88-95.
Srour N, Thebaud B. Stem cells in animal asthma models: a systematic review. Cytotherapy, (2014); 16(12): 1629-1642.
Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, et al. Evidence for human lung stem cells. The New England Journal of Medicine, (2011); 364(19): 1795-1806.
Huertas A, Palange P. Circulating endothelial progenitor cells and chronic pulmonary diseases. European Respiratory Journal, (2011); 37(2): 426-431.
Rankin S. Mesenchymal stem cells. Thorax, (2012); 67(6): 565-566.
Tzouvelekis A, Ntolios P, Bouros D. Stem cell treatment for chronic lung diseases. Respiration, (2013); 85(3): 179-192.
Sun YQ, Deng MX, He J, Zeng QX, Wen W, et al. Human pluripotent
stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice. Stem Cells, (2012); 30(12): 2692-2699.
Wang CY, Chiou GY, Chien Y, Wu CC, Wu TC, et al. Induced pluripotent stem cells without c-Myc reduce airway responsiveness and allergic reaction in sensitized mice. Transplantation, (2013); 96(11): 958-965.
Firinci F, Karaman M, Baran Y, Bagriyanik A, Ayyildiz ZA, et al. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. International Immunopharmacology, (2011); 11(8): 1120-1126.
Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy, (2011); 66(4): 523-531.
Ge X, Bai C, Yang J, Lou G, Li Q, et al. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma. Journal of Cellular Biochemistry, (2013); 114(7): 1595-1605.
Goodwin M, Sueblinvong V, Eisenhauer P, Ziats NP, LeClair L, et al. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells, (2011); 29(7): 1137-1148.
Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, et al. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology-Lung Cellular and Molecular Physiology, (2010); 299(6): 3.
Cho KS, Roh HJ. Immunomodulatory effects of adipose-derived stem cells in airway allergic diseases. Current Stem Cell Research & Therapy, (2010); 5(2): 111-115.
Heldens GT, Blaney Davidson EN, Vitters EL, Schreurs BW, Piek E, et al. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells. Tissue Engineering Part A, (2012); 18(1-2): 45-54.
Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity, (2010); 43(4): 255-263.
Kunzmann S, Wright JR, Steinhilber W, Kramer BW, Blaser K, et al. TGF-beta1 in SP-A preparations influence immune suppressive properties of SP-A on human CD4+ T lymphocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, (2006); 291(4): 28.
Goldstein BD, Lauer ME, Caplan AI, Bonfield TL. Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling. Journal of Inflammation, (2017); 14(18): 017-0165.
Park HK, Cho KS, Park HY, Shin DH, Kim YK, et al. Adipose-derived stromal cells inhibit allergic airway inflammation in mice. Stem Cells and Development, (2010); 19(11): 1811-1818.
Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO Journal, (2014); 33(9): 994-1010.
Mathias LJ, Khong SM, Spyroglou L, Payne NL, Siatskas C, et al. Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. Journal of Immunology, (2013); 191(12): 5914-5924.
Shigemura N, Okumura M, Mizuno S, Imanishi Y, Matsuyama A, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. American Journal of Respiratory and Critical Care Medicine, (2006); 174(11): 1199-1205.
Shigemura N, Okumura M, Mizuno S, Imanishi Y, Nakamura T, et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. American Journal of Transplantation, (2006); 6(11): 2592-2600.
Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. American Journal of Respiratory and Critical Care Medicine, (2011); 183(2): 215-225.
Palange P, Testa U, Huertas A, Calabro L, Antonucci R, et al. Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. European Respiratory Journal, (2006); 27(3): 529-541.
Zhen G, Liu H, Gu N, Zhang H, Xu Y, et al. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Frontiers in Bioscience, (2008); 133415-3422.
Zhen G, Xue Z, Zhao J, Gu N, Tang Z, et al. Mesenchymal stem cell transplantation increases expression of vascular endothelial growth factor in papain-induced emphysematous lungs and inhibits apoptosis of lung cells. Cytotherapy, (2010); 12(5): 605-614.
Katsha AM, Ohkouchi S, Xin H, Kanehira M, Sun R, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Molecular Therapy, (2011); 19(1): 196-203.
Harrell CR, Sadikot R, Pascual J, Fellabaum C, Jankovic MG, et al. Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives. Stem Cells International, (2019); 2(4236973).
Glassberg M. Allogeneic Human Cells (hMSC) Via Intravenous Delivery in Patients With Mild Asthma (ASTEC). https://clinicaltrials.gov/ct2/show/NCT03137199. Accessed on 5 May 2020.
Biosciences T. Safety and Feasibility Study of Intranasal Mesenchymal Trophic Factor (MTF) for Treatment of Asthma. https://clinicaltrials.gov/ct2/show/NCT02192736. Accessed on 5 May 2020.
Stefanowicz D, Hackett TL, Garmaroudi FS, Gunther OP, Neumann S, et al. DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children. PLoS One, (2012); 7(9): 6.
Cheng RY, Shang Y, Limjunyawong N, Dao T, Das S, et al. Alterations of the lung methylome in allergic airway hyper-responsiveness. Environmental and Molecular Mutagenesis, (2014); 55(3): 244-255.
Shang Y, Das S, Rabold R, Sham JS, Mitzner W, et al. Epigenetic alterations by DNA methylation in house dust mite-induced airway hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, (2013); 49(2): 279-287.
Verma M, Chattopadhyay BD, Paul BN. Epigenetic regulation of DNMT1 gene in mouse model of asthma disease. Molecular Biology Reports, (2013); 40(3): 2357-2368.
Yu Q, Zhou B, Zhang Y, Nguyen ET, Du J, et al. DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proceedings of the National Academy of Sciences of the United States of America, (2012); 109(2): 541-546.
Wu CJ, Yang CY, Chen YH, Chen CM, Chen LC, et al. The DNA methylation inhibitor 5-azacytidine increases regulatory T cells and alleviates airway inflammation in ovalbumin-sensitized mice. International Archives of Allergy and Immunology, (2013); 160(4): 356-364.
Ito K, Lim S, Caramori G, Cosio B, Chung KF, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2002 Jun 25;99(13):8921-6.
Cosio BG, Mann B, Ito K, Jazrawi E, Barnes PJ, et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. American Journal of Respiratory and Critical Care Medicine, (2004); 170(2): 141-147.
Hew M, Bhavsar P, Torrego A, Meah S, Khorasani N, et al. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. American Journal of Respiratory and Critical Care Medicine. 2006 Jul 15;174(2): 134-41.
John AE, Zhu YM, Brightling CE, Pang L, Knox AJ. Human airway smooth muscle cells from asthmatic individuals have CXCL8 hypersecretion due to increased NF-kappa B p65, C/EBP beta, and RNA polymerase II binding to the CXCL8 promoter. Journal of Immunology, (2009); 183(7): 4682-4692.
Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. Journal of Immunology, (2012); 189(2): 819-831.
Banerjee A, Trivedi CM, Damera G, Jiang M, Jester W, et al. Trichostatin A abrogates airway constriction, but not inflammation, in murine and human asthma models. American Journal of Respiratory Cell and Molecular Biology, (2012); 46(2): 132-138.
Vucic EA, Chari R, Thu KL, Wilson IM, Cotton AM, et al. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. American Journal of Respiratory Cell and Molecular Biology, (2014); 50(5): 912-922.
Qiu W, Baccarelli A, Carey VJ, Boutaoui N, Bacherman H, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. American Journal of Respiratory and Critical Care Medicine, (2012); 185(4): 373-381.
Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends in Molecular Medicine, (2011); 17(7): 363-371.
Bozinovski S, Vlahos R, Hansen M, Liu K, Anderson GP. Akt in the pathogenesis of COPD. International Journal of Chronic Obstructive Pulmonary Disease, (2006); 1(1): 31-38.
Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, et al. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. Journal of Clinical Investigation, (2013); 123(12): 5212-5230.
Ito K, Ito M, Elliott WM, Cosio B, Caramori G, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. The New England Journal of Medicine, (2005); 352(19): 1967-1976.
Yang SR, Chida AS, Bauter MR, Shafiq N, Seweryniak K, et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. American Journal of Physiology-Lung Cellular and Molecular Physiology, (2006); 291(1): 10.
Enesa K, Ito K, Luong le A, Thorbjornsen I, Phua C, et al. Hydrogen peroxide prolongs nuclear localization of NF-kappaB in activated cells by suppressing negative regulatory mechanisms. Journal of Biological Chemistry, (2008); 283(27): 18582-18590.
Bagasra O, Prilliman KR. RNA interference: the molecular immune system. Journal of Molecular Histology, (2004); 35(6): 545-553.
Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology, (2007); 8(1): 23-36.
Ali HM, Urbinati G, Raouane M, Massaad-Massade L. Significance and applications of nanoparticles in siRNA delivery for cancer therapy. Expert Review of Clinical Pharmacology, (2012); 5(4): 403-412.
Fuchs U, Damm-Welk C, Borkhardt A. Silencing of disease-related genes by small interfering RNAs. Current Molecular Medicine, (2004); 4(5): 507-517.
Denli AM, Hannon GJ RNAi: an ever-growing puzzle. Trends in Biochemical Sciences, 2003 Apr;28(4):196-201.
Dykxhoorn DM, Novina CD, Sharp PA Killing the messenger: short RNAs that silence gene expression. Nature Reviews Molecular Cell Biology, (2003); 4(6): 457-467.
Kupferschmidt K A lethal dose of RNA. Science, 2013; 341(6147): 732-3.
Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, (2006); 2(12): 711-719.
Fujita Y, Takeshita F, Kuwano K, Ochiya T. RNAi Therapeutic Platforms for Lung Diseases. Pharmaceuticals, (2013); 6(2): 223-250.
Popescu FD. Antisense- and RNA interference-based therapeutic strategies in allergy. Journal of Cellular and Molecular Medicine, (2005);
(4): 840-853.
Khaitov MR, Shilovskiy IP, Nikonova AA, Shershakova NN, Kamyshnikov OY, et al. Small interfering RNAs targeted to interleukin-4 and respiratory syncytial virus reduce airway inflammation in a mouse model of virus-induced asthma exacerbation. Human Gene Therapy, (2014); 25(7): 642-650.
Zafra MP, Mazzeo C, Gamez C, Rodriguez Marco A, de Zulueta A, et al. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS One, (2014); 9(3): e91996.
Ulanova M, Puttagunta L, Marcet-Palacios M, Duszyk M, Steinhoff U, et al. Syk tyrosine kinase participates in beta1-integrin signaling and inflammatory responses in airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, (2005); 288(3): 19.
Seguin RM, Ferrari N. Emerging oligonucleotide therapies for asthma and chronic obstructive pulmonary disease. Expert Opinion on Investigational Drugs, (2009); 18(10): 1505-1517.
Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, et al. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology & Therapeutics, (2009); 121(1): 1-13.
Gill JS, Zhu X, Moore MJ, Lu L, Yaszemski MJ, et al. Effects of NFkappaB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line. Biomaterials, (2002); 23(13): 2773-2781.
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, (2006); 11(17-18): 812-818.
Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. The Journal of Clinical Pharmacology, (1996); 36(1): 55-63.
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, (2008); 7(9): 771-782.
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, (2007); 2(12): 751-760.
DOI: http://dx.doi.org/10.62940/als.v7i3.968
Refbacks
- There are currently no refbacks.