CRISPR/Cas9 system: Current applications and future potential in rice breeding

Anh Phu Nam Bui

Abstract


Rice (Oryza sativa L.) plays a key role in human social and economic life. In order to meet the increasing needs of human food consumption, there is a constant requirement to develop rice cultivars with enhanced agricultural traits. The emerge of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (CRISPR/Cas9) system provides unprecedented opportunities in studying gene functions and creating new rice varieties with better characteristics, including improved tolerance to biotic and abiotic stresses, and increasing yield and quality. This review aims to provide details about the latest results of CRISPR/Cas9 system application on rice to obtain better adapted to environmental and commercial demands.

Keywords: CRISPR/Cas9; Biotic stress; Abiotic stress; Yield; Quality  


Full Text:

PDF

References


Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Critical Reviews in Food Science and Nutrition, (2017); 57(11): 2455-2481.

Breviario D, Genga A. Stress Response in Rice. J Rice Res, (2013); 2.

Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, et al. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, (2014); 169(5): 325-336.

Rejesus RM, Mutuc MEM, Yasar M, Lapitan AV, Palis FG, et al. Sending Vietnamese Rice Farmers Back to School: Further Evidence on the Impacts of Farmer Field Schools. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, (2012); 60(3): 407-426.

Milovanovic V, Smutka L. Asian Countries in the Global Rice Market. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, (2017); 65(2): 679-688.

Wei F-J, Droc G, Guiderdoni E, Hsing Y-IC. International Consortium of Rice Mutagenesis: resources and beyond. Rice (New York, NY), (2013); 6(1): 39-39.

Li G, Chern M, Jain R, Martin Joel A, Schackwitz Wendy S, et al. Genome-Wide Sequencing of 41 Rice (Oryza sativa L.) Mutated Lines Reveals Diverse Mutations Induced by Fast-Neutron Irradiation. Molecular Plant, (2016); 9(7): 1078-1081.

Yang N, Wang R, Zhao Y. Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology. Molecular plant, (2017); 10(9): 1141-1143.

Romero FM, Gatica-Arias A. CRISPR/Cas9: Development and Application in Rice Breeding. Rice Science, (2019); 26(5): 265-281.

Jang G, Lee S, Um TY, Chang SH, Lee HY, et al. Genetic chimerism of CRISPR/Cas9-mediated rice mutants. Plant Biotechnology Reports, (2016); 10(6): 425-435.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, (2013); 8(11): 2281-2308.

Bi H, Yang B (2017) Chapter Five – Gene Editing With TALEN and CRISPR/Cas in Rice. In: Weeks DP, Yang B, editors. Progress in Molecular Biology and Translational Science: Academic Press. pp. 81-98.

Char SN, Li R, Yang B (2019) CRISPR/Cas9 for Mutagenesis in Rice. In: Kumar S, Barone P, Smith M, editors. Transgenic Plants: Methods and Protocols. New York, NY: Springer New York. pp. 279-293.

Mishra R, Joshi RK, Zhao K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Frontiers in Plant Science, (2018); 9(1361).

Xie K, Yang Y. RNA-Guided Genome Editing in Plants Using a CRISPR–Cas System. Molecular Plant, (2013); 6(6): 1975-1983.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY), (2012); 337(6096): 816-821.

Xu R, Wei P, Yang J (2017) Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. In: Reeves A, editor. In Vitro Mutagenesis: Methods and Protocols. New York, NY: Springer New York. pp. 33-40.

Jiang Y, Chen B, Duan C, Sun B, Yang J, et al. Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Applied and Environmental Microbiology, (2015); 81(7): 2506-2514.

Laughery MF, Wyrick JJ. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae. Current Protocols in Molecular Biology, (2019); 129(1): e110.

Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O'Connor-Giles KM. CRISPR-Cas9 Genome Editing in Drosophila. Current protocols in molecular biology, (2015); 11131.32.31-31.32.20.

Dickinson DJ, Goldstein B. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering. Genetics, (2016); 202(3): 885-901.

Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications, (2018); 9(1): 1967.

Hussain A, Imran QM, Yun B-W. CRISPR/Cas9-Mediated Gene Editing in Grain Crops. (2019); Recent Advances in Grain Crops Research.

Shen C, Que Z, Xia Y, Tang N, Li D, et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology, (2017); 60(6): 539-547.

Huang QN, Y.F S, X.B Z, L.X S, B.H F, et al. Construction and analysis of tifya and tifyb mutants in rice (Oryza sativa) based on CRISPR/Cas9 technology. J Agric Biotechnol, (2016); 251003-1012.

Lou D, Wang H, Liang G, Yu D. OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice. Frontiers in plant science, (2017); 8993-993.

Li J, Meng X, Zong Y, Chen K, Zhang H, et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, (2016); 2(10): 16139.

Li Q, Sapkota M, van der Knaap E. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Horticulture Research, (2020); 7(1): 36.

Xu R, Qin R, Li H, Li D, Li L, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant biotechnology journal, (2017); 15(6): 713-717.

Sun Y, Zhang X, Wu C, He Y, Ma Y, et al. Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase. Molecular Plant, (2016); 9(4): 628-631.

Wang F, Wang C, Liu P, Lei C, Hao W, et al. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLOS ONE, (2016); 11(4): e0154027.

Fiaz S, Ahmad S, Noor MA, Wang X, Younas A, et al. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. International journal of molecular sciences, (2019); 20(4): 888.

Gaoneng S, Lihong X, Guiai J, Xiangjin W, Zhonghua S, et al. CRISPR/CAS9-mediated Editing of the Fragrant Gene Badh2 in Rice. Experimental Techniques, (2017); 31(2): 216.

Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, (2019); 37(11): 1344-1350.

Ma J, Chen J, Wang M, Ren Y, Wang S, et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Journal of Experimental Botany, (2017); 69(5): 1051-1064.

Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant biotechnology journal, (2018); 16(11): 1918-1927.

Li M, Li X, Zhou Z, Wu P, Fang M, et al. Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Frontiers in Plant Science, (2016); 7(377).

Huang L, Zhang R, Huang G, Li Y, Melaku G, et al. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. The Crop Journal, (2018); 6(5): 475-481.

Wang Y, Geng L, Yuan M, Wei J, Jin C, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Reports, (2017); 36(8): 1333-1343.

Barman HN, Sheng Z, Fiaz S, Zhong M, Wu Y, et al. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biology, (2019); 19(1): 109.

Cui Y, Zhu M, Xu Z, Xu Q. Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system. Theoretical and Applied Genetics, (2019); 132(6): 1887-1896.

Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biology, (2018); 18(1): 174.

Ma L, Zhu F, Li Z, Zhang J, Li X, et al. TALEN-Based Mutagenesis of Lipoxygenase LOX3 Enhances the Storage Tolerance of Rice (Oryza sativa) Seeds. PLOS ONE, (2015); 10(12): e0143877.

Gu W, Zhang D, Qi Y, Yuan Z (2019) Generating Photoperiod-Sensitive Genic Male Sterile Rice Lines with CRISPR/Cas9. In: Qi Y, editor. Plant Genome Editing with CRISPR Systems: Methods and Protocols. New York, NY: Springer New York. pp. 97-107.

Miao C, Xiao L, Hua K, Zou C, Zhao Y, et al. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences, (2018); 115(23): 6058-6063.

Tang L, Mao B, Li Y, Lv Q, Zhang L, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, (2017); 7(1): 14438.

Sun Y, Jiao G, Liu Z, Zhang X, Li J, et al. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in plant science, (2017); 8298-298.

Zhang J, Zhang H, Botella JR, Zhu J-K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of integrative plant biology, (2018); 60(5): 369-375.

Abe K, Araki E, Suzuki Y, Toki S, Saika H. Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, (2018); 13158-62.

Li J, Zhang X, Sun Y, Zhang J, Du W, et al. Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. Journal of Integrative Plant Biology, (2018); 60(7): 536-540.


Refbacks

  • There are currently no refbacks.