The Contagious Nature of SARS-CoV-2 Omicron Variant and Vaccine Efficacy
Abstract
Background: Since the first COVID-19 outbreak, variants of SARS-CoV-2 have continued to dominate the global population. The repeated waves of emerging variants, each replacing the previous one with a greater rate of transmissibility and mutations, are the primary cause of the global pandemic. Public health concerns dramatically rose when a highly mutated variant (VOC) omicron (B.1.1.529) emerged in late 2021. omicron has more than 50 mutations, and over 30 mutations are in their spike protein that contributes to the virologic characteristics of the variant. Omicron is more contagious than previously reported SARS-CoV-2 strains and can re-infect people who have already contracted other SARS-CoV-2 infections. The variant has acquired a unique immune escape mechanism against monoclonal antibodies and vaccines. Currently, no therapeutic drug or vaccine is specifically available to prevent omicron infection and sublineage emergence. Method: The review was designed to search the recent research and literature and compile the most pertinent data on the virologic characteristics of the variant of concern. Result: The study reviewed and discussed the present prevalence, infectivity, dominance, immune evasion, therapeutic options, vaccine efficacy, and the future prospect of the omicron variant. Conclusion: Omicron variant has become a global public health concern due to the emergence of highly mutated sublineages. Developing variant-specific therapeutic drugs or vaccines is desirable to prevent the spread of these contagious variants globally.
Keywords: COVID-19, SARS-CoV-2, Omicron variant, Vaccine efficacy, Immune evasion.
Full Text:
PDFReferences
Cucinotta D, Vanelli M, WHO Declares COVID-19 a Pandemic. Acta Biomed: Atenei Parmensis, (2020); 91(1): 157–60.
Ansori AN, Kharisma VD, Fadholly A, Tacharina MR, Antonius Y, Parikesit AA. Severe Acute Respiratory Syndrome Coronavirus-2 Emergence And Its Treatment With Alternative Medicines: A review. Research Journal of Pharmacy and Technology, (2021); 14(10): 5551-57
Aleem A, Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). In StatPearls Publishing, (2022); 12.
Barouch DH. Covid-19 Vaccines-Immunity, Variants, Boosters. New England Journal of Medicine, (2022); 387(11): 1011-20.
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). Statpearls, (2022); 5.
Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, Felix SE, Tie Y, Fullerton KE. Coronavirus disease 2019 case surveillance—United States, January 22–May 30, 2020. Morbidity and Mortality Weekly Report, (2020); 6;69(24):759.
Callaway E. Delta Coronavirus Variant: Scientists Brace For Impact. Nature, (2021); 595(7865): 17-8.
Sahoo JP, Samal KC. World on alert: WHO designated South African new COVID strain (Omicron/B. 1.1. 529) as a variant of concern. Biotica Research Today, (2021); 293(11): 1086-88.
Arora S, Grover V, Saluja P, Algarni YA, Saquib SA, Asif SM, Batra K, Alshahrani MY, Das G, Jain R, Ohri A. Literature review of omicron: a grim reality amidst COVID-19. Microorganisms, (2022); 10(2): 451.
Wang L, Cheng G. Sequence analysis of the emerging SARS‐CoV‐2 variant Omicron in South Africa. Journal of Medical Virology, (2022); 94(4): 1728-33.
Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, San JE, et al.,. SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. MedRxiv, (2021); 12.
Lauring AS, Frydman J, Andino R. The role of mutational robustness in RNA virus evolution. Nature Reviews Microbiology, (2013); 11(5): 327-36.
Lippi G, Mattiuzzi C, Henry BM. Updated picture of SARS-CoV-2 variants and mutations. Diagnosis, (2022); 9(1): 11-17.
Cui Z, Liu P, Wang N, Wang L, Fan K, Zhu Q, Wang K, Chen R, Feng R, Jia Z, Yang M. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell, (2022); 185(5): 860-71.
Vaughan A. Omicron emerges, (2021; 7.
Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, Yu J. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, (2022); 602(7898): 676-81.
Pulliam JR, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, Dushoff J, Mlisana K, Moultrie H. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science, (2022); 376(6593): 4947.
Tracking SARS-CoV-2 Variant: Available from https://www.who.int/en/activities/tracking-SARS-CoV-2-variants, Accessed October 18, 2022.
Co-Variants: Available from https://covariants.org, Accessed October 18, 2022.
Mohiuddin M, Kasahara K. Investigating the aggressiveness of the COVID-19 Omicron variant and suggestions for possible treatment options. Respiratory Medicine, (2021); 4: 106716.
French G, Hulse M, Nguyen D, Sobotka K, Webster K, Corman J, Aboagye‐Nyame B, Dion M, Johnson M, Zalinger B, Ewing M. Impact of hospital strain on excess deaths during the COVID‐
pandemic—United States, July 2020–July 2021. American Journal of Transplantation, (2022); 22(2): 654-57.
Chen DY, Kenney D, Chin CV, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, OConnell AK, Kotton DN. Role of spike in the pathogenic and antigenic behavior of SARS-CoV-2 BA. 1 Omicron. BioRxiv, (2022); 1.
Spinello A, Saltalamacchia A, Borisek J, Magistrato A. Allosteric cross-talk among spike’s receptor-binding domain mutations of the SARS-CoV-2 South African variant triggers an effective hijacking of human cell receptor. The Journal of Physical Chemistry Letters, (2021); 12(25): 5987-93.
Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C, Ip JD, Chan WM, Chu AW, Chan KH, Jin DY. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerging microbes & infections, (2022); 31;11(1): 277-83.
Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I, Ito J. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, (2022); 602(7896): 300-306.
Youk J, Kim T, Evans KV, Jeong YI, Hur Y, Hong SP, Kim JH, Yi K, Kim SY, Na KJ, Bleazard T. Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell, (2020); 27(6): 905-919.
Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, Fouch ME. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, (2021); 184(9): 2316-2331.
Chen J, Wang R, Gilby NB, Wei GW. Omicron variant (B. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance. Journal of Chemical Information And Modeling, (2022); 6.
World Health Organization. The effects of virus variants on COVID-19 vaccines. Available from:https://www.who.int/news-room/feature-stories/detail/the-effects-of-virus-variants-on-covid-19-vaccines, (2021), Accessed March 29, 2022.
Sender R, Bar-On YM, Gleizer S, Bernshtein B, Flamholz A, Phillips R, Milo R. The total number and mass of SARS-CoV-2 virions. Proceedings of the National Academy of Sciences, (2021); 118(25): e2024815118.
Paulonis JJ. The Antigenic Shift or Drift of the Influenza Virus. Washington Academy of Sciences. Journal of the Washington Academy of Sciences, (2019); 105(1): 7-12.
Choi JY, Smith DM. SARS-CoV-2 variants of concern. Yonsei Medical Journal, (2021); 62(11): 961.
Update on omicron. World Health Organization. Available from: https://www.who.int/news/item/update-on-omicron, (2021), Accessed May 3, 2022.
He X, Hong W, Pan X, Lu G, Wei X. SARS‐CoV‐2 Omicron variant: characteristics and prevention. Medical Communication, (2020).
Ettaboina, Santhosh, Nakkala, Komalatha, Chathalingath, Nayana. An investigation on Omicron Variant Corona Virus and its Impact, (2022); 10.46632/psr/1/1/3. (2021).
Lupala CS, Ye Y, Chen H, Su XD, Liu H. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochemical and Biophysical Research Communications, (2022); 590: 34-41.
Wu L, Zhou L, Mo M, Liu T, Wu C, Gong C, Lu K, Gong L, Zhu W, Xu Z. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduction And Targeted Therapy, (2022); 7(1): 1-3.
European Centre for Disease Prevention and Control. Epidemiological Update: Omicron Variant of Concern (VOC)-Data As of 11 December 2021. Available from: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-omicron-variantconcern-voc-data-11-december-(2021), Accessed October 18, 2022.
Abbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, Munday JD, Meakin S, Doughty EL, Chun JY, Chan YW. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, (2020); 5(112): 112.
Koleya T, Kumara M, Goswami A, Ethayathulla AS, Hariprasada G. Structural modeling of Omicron spike protein and its complex with human ACE-2 receptor: Molecular basis for high transmissibility of the virus. Biochemical and Biophysical Research Communications, (2022); 7.
Venkatakrishnan AJ, Anand P, Lenehan PJ, Suratekar R, Raghunathan B, Niesen MJ, Soundararajan V. Omicron variant of SARS-CoV-2 harbors a unique insertion mutation of putative viral
or human genomic origin. Preprints, (2021).
Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K. Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. Journal of Autoimmunity, (2022); 126:102779.
Sun Y, Lin W, Dong W, Xu J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. Journal of Biosafety and Biosecurity, (2022); 4(1): 33-37.
Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nature Reviews Microbiology, (2008); (6): 477-87.
Hendaus MA, Jomha FA. Delta variant of COVID-19: A simple explanation. Qatar Medical Journal, (2021); (3): 49.
Burki TK. Omicron variant and booster COVID-19 vaccines. The Lancet Respiratory Medicine, (2022); 10(2): e17.
Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, Crowcroft NS. The basic reproduction number (R0) of measles: a systematic review. The Lancet Infectious Diseases, (2017); 17(12): e420-28.
Omicron variant global prevalence. Available from https://www.statista.com/statistics/1279100/number-omicron-variant worldwid11742399try, (2022). Accessed on March 8 and October 18, 2022.
Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, Amoako DG, Everatt J, Bhiman JN, Scheepers C, Tebeila N. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. The Lancet, (2022); 399(10323): 437-46.
COVID-19 Situation in Pakistan. Update on Omicron. Available from: https://covid.gov.pk, (2022). Accessed October 17, 2022.
Deerain J, Druce J, Tran T, Batty M, Yoga Y, Fennell M, Dwyer DE, Kok J, Williamson DA. Assessment of the analytical sensitivity of 10 lateral flow devices against the SARS-CoV-2 Omicron variant. Journal of Clinical Microbiology (2022); 60(2) :e02479-21.
Vogels CB, Breban MI, Alpert T, Petrone ME, Watkins AE, Ott IM, de Jesus JG, Claro IM, Ferreira GM, Crispim MA, Network BU. PCR assay to enhance global surveillance for SARS-CoV-2 variants of concern. MedRxiv, (2021); 12.
US Food and Drug Administration (FDA). SARS-CoV-2 Viral Mutations: Impact on COVID-19 Tests, (2021). Available from:https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov2-viral-mutations-impact-covid-19-tests. Accessed October 16, 2022.
Omicron SARS-CoV-2 Can Infect Faster and Better than Delta in Human Bronchus but with Less Severe Infection in Lung. Available from https://www. med.hku.hk/en/news/press/20211215-omicron-SARS-CoV-2-infection, (2022). Accessed March 23, 2022.
Burki T. Booster shots for COVID-19—the debate continues. The Lancet Infectious Diseases, (2021); 21(10): 1359-1360.
Dyer O. Covid-19: Omicron is causing more infections but fewer hospital admissions than delta, South African data show, (2021).
Ledford H. How severe are Omicron infections. Nature, (2021); 600(7890): 577-78.
Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, Bashir N, Xue M. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. Journal of Clinical Microbiology, (2020); 58(5): e00187-200.
Therapeutic Drugs against COVID-19. Available from https://www.goodrx.com/conditions/covid-19/coronavirus-treatments-on-the-way. Accessed October 18, 2022.
Saravolatz LD, Depcinski S, Sharma M. Molnupiravir and nirmatrelvir-ritonavir: oral COVID antiviral drugs. Clinical Infectious Diseases, (2022); 4.
Ansems K, Grundeis F, Dahms K, Mikolajewska A, Thieme V, Piechotta V, Metzendorf MI, Stegemann M, Benstoem C, Fichtner F. Remdesivir for the treatment of COVID‐19. Cochrane Database of Systematic Reviews, (2021); (8).
Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, di Iulio J, Zatta F. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, (2022); 602(7898): 664-670.
Aggarwal A, Stella AO, Walker G, Akerman A, Milogiannakis V, Hoppe AC, Mathivanan V, Fichter C, McAllery S, Amatayakul-Chantler S, Roth N. SARS-CoV-2 Omicron: reduction of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. MedRxiv, (2021); 1.
Zang J, Yin Y, Xu S, Qiao W, Liu Q, Lavillette D, Zhang C, Wang H, Huang Z. Neutralizing Potency of Prototype and Omicron RBD mRNA Vaccines Against Omicron Variant. Frontiers in Immunology, (2022); 13: 908478-82.
Pajon R, Doria-Rose NA, Shen X, Schmidt SD, O’Dell S, McDanal C, Feng W, Tong J, Eaton A, Maglinao M, Tang H. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination. New England Journal of Medicine, (2022); 386(11): 1088-1091.
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New England Journal of Medicine, (2020); 382(12): 1177-79.
da Silva MK, Fulco UL, da Silva Júnior ED, Oliveira JI. Moving targets: COVID-19 vaccine efficacy against Omicron subvariants. Molecular Therapy, (2022); 30(8): 2644-45.
Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, Yu Y. BA. 2.12. 1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection. Nature, (2022); 608(7923): 593-602.
Ahmad I, Khan H, Salman M, Rehman L, Khan SA, Saddam IK, Naeem I, Qazi NU. Modeling interaction between non-structural protein 2 of Chikungunya Virus and various protein factors of innate pathway. Biomedical Letters, (2022); 8(2): 162-9.
Mohapatra RK, Sarangi AK, Kandi V, Azam M, Tiwari R, Dhama K. Omicron (B. 1.1. 529 variant of SARS‐CoV‐2); an emerging threat: current global scenario. Journal of medical virology, (2022); 94(5): 1780-83.
Dolgin E. Omicron thwarts some of the world’s most-used COVID vaccines. Nature, (2022); 601(7893): 311.
Gram MA, Emborg HD, Schelde AB, Friis NU, Nielsen KF, Moustsen-Helms IR, Legarth R, Lam JU, Chaine M, Malik AZ, Rasmussen M. Vaccine effectiveness against SARS-CoV-2 infection or COVID-19 hospitalization with the Alpha, Delta, or Omicron SARS-CoV-2 variant: A nationwide Danish cohort study. PLoS Medicine, (2022); 19(9): e1003992.
Hansen CH, Schelde AB, Moustsen-Helms IR, Emborg HD, Krause TG, Mølbak K, Valentiner-Branth P. Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish Cohort Study. MedRxiv, (2021).
Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O’Connell AM, Simons D. Covid-19 vaccine effectiveness against the Omicron (B. 1.1. 529) variant. New England Journal of Medicine, (2022); 386(16): 1532-46.
Muik, Alexander, Bonny Gaby Lui, Ann-Kathrin Wallisch, Maren Bacher, Julia Mühl, Jonas Reinholz, Orkun Ozhelvaci et al.,. "Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine–elicited human sera. Science, (2022); eabn7591.
Roessler A, Riepler L, Bante D, von Laer D, Kimpel J. SARS-CoV-2 B. 1.1. 529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals. MedRxiv, (2021).
Alamri MA, ul Qamar MT, Mirza MU, Alqahtani SM, Froeyen M, Chen LL. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. Journal of pharmaceutical analysis, (2020); 10(6): 546-59.
Hakami AR. Targeting the RBD of omicron variant (B. 1.1. 529) with medicinal phytocompounds to abrogate the binding of spike glycoprotein with the hACE2 using computational molecular search and simulation approach. Biology, (2022); 11(2): 258.
Lu J, Zhang Y, Qi D, Yan C, Wu B, Huang JH, Yao J, Wu E, Zhang G. An L-theanine derivative targets against SARS-CoV-2 and its Delta and Omicron variants. Heliyon, (2022); 9:e09660.
Oreshkova N, Molenaar RJ, Vreman S, Harders F, Munnink BB, Hakze-van Der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance, (2020); 25(23): 2001005.
Goc A, Rath M, Niedzwiecki A. Composition of naturally occurring compounds decreases activity of Omicron and SARS-CoV-2 RdRp complex. European Journal of Microbiology and Immunology, (2022); 12(2): 39-45.
Naidu SA, Mustafa G, Clemens RA, Naidu AS. Plant-derived natural non-nucleoside analog inhibitors (NNAIs) against RNA-dependent RNA polymerase complex (nsp7/nsp8/nsp12) of SARS-CoV-2. Journal of Dietary Supplements, (2021); 17: 1-30.
Van Egeren D, Novokhodko A, Stoddard M, Tran U, Zetter B, Rogers MS, Joseph-McCarthy D, Chakravarty A. Controlling long-term SARS-CoV-2 infections can slow viral evolution and reduce the risk of treatment failure. Scientific reports, (2021); 11(1): 1-9.
DOI: http://dx.doi.org/10.62940/als.v9i4.1467
Refbacks
- There are currently no refbacks.