Herbal therapy in diabetes mellitus: A review
Abstract
Insulin therapy is the mainstay of treatment in patients with type 1 diabetes, while diet and lifestyle changes, and if left untreated, insulin therapy are effective in treating type 2 diabetes. Research has shown that the oldest treatment for diabetes was the use of herbs. Thus, various medicinal plants were used to relieve many of the complications of diabetes. This study aimed to assess the effectiveness of various medicinal plants in the treatment of diabetes. The data on medicinal plants and diabetes were collected from related articles published from 2014 to 2021 in reputable databases such as Cochrane, PubMed, Scopus, ScienceDirect, Embase, and SID. Data analysis showed that medicinal plants such as Allium sativum, Cinnamomum verum, Trigonella graecum foenum, Silybum marianus, Citrullus colocynthis, Abelmoschus esculentus, Eryngium, Coriandrum sativum L, and Zingiber officinale were the most frequently used herbs in the treatment of diabetes. Medicinal plants can reduce blood sugar in patients due to having effective medicinal compounds and natural antioxidants and due to the least side effects but longer treatment period.
Keywords: Diabetes; Medicinal plants; Remedy; Pharmaceutical Plant
Full Text:
PDFReferences
Humaidan Al-Moussawi NH. Hormonal and enzymatic analysis for pancreas of diabetic and obese mice in Iraq. Caspian Journal of Environmental Sciences, (2022); 20(2): 337-349.
Negahdari S. Ethnobotanical study of medicinal plants used for management of diabetes mellitus in the east of Khuzestan, southwest Iran. Journal of Biochemicals and Phytomedicine. (2023); 2(1): 7-10.
Hussein AA, Alsharifi MR. Antimicrobial activity of silver nanoparticles against proteus mirabilis isolated from patients with food diabetes ulcer. Caspian Journal of Environmental Sciences, (2021); 19(5): 853-860.
Cho N, Shaw J, Karuranga S, Huang Yd, da Rocha Fernandes J, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, (2018); 138271-281.
Amoo SO, Mudau TE, Olowoyo JO. In vitro α-glucosidase inhibitory activity of medicinal plants used traditionally for treating diabetes in Vhembe District, South Africa. J Herbmed Pharmacology, (2022);11(4):513-521.
Alkhateeb HH. Evaluation of antidiabetic, antioxidant and antilipidemic potential of natural dietary product prepared from Cyphostemma digitatum in rats’ model of diabetes. Journal of Herbmed Pharmacology, (2022); 1;11(2):197-203.
Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. International Journal of Molecular Sciences, (2017); 18(7): 1419.
Kustiawan P M. A Reviw of Effectiveness of Red betel Leaves (Piper crocatum) as Antihyperglysemic Activities. Plant Biotechnology Persa, (2021); 3 (2) :39-47.
Olasehinde OR, Afolabi OB. Identification of bioactive constituents of chloroform fraction from Annona muricata leaf, its antioxidant activity and inhibitory potential against carbohydrate-hydrolyzing α-amylase and α-glucosidase activities linked to type II diabetes mellitus: In vitro study. Journal of HerbMed Pharmacology, (2023);12(1):100-108.
Hosseini SE, Tavakoli F, Karami M. Medicinal plants in the treatment of diabetes mellitus. Clinical Excellence, (2014); 2(2): 64-89.
Gholami-Ahangaran M, Ostadpoor M, Heidari S H. An Overview of Cinnamon Properties Effects on Blood Glucose and Hemoglobin A1C in Diabetic People. Plant Biotechnology Persa, (2020); 2 (2) :33-37.
Najmabadi, Shahandokht, Nojomi, Moradi Lakeh, Maziar, Shojaei Baghini, Hassan. Common Therapeutic Nutrition Plants in the Self-Treatment of Diabetic Patients Referred to Diabetes Clinics. Iranian Journal of Diabetes and Metabolism, (2014); 13(5): 413-24.
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine, (2006); 13(9-10): 624-629.
Elkayam A, Mirelman D, Peleg E, Wilchek M, Miron T, et al. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats. American journal of hypertension, (2003); 16(12): 1053-1056.
Chang MLW, Johnson MA. Effect of garlic on carbohydrate metabolism and lipid synthesis in rats. Journal of Nutrition, (1980);110: 931–6.
Poonam T, Prakash GP, Kumar LV. Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: an approach to possible herb-drug interaction. Drug metabolism and drug interactions, (2013); 28(4): 225-230.
Augusti K, Sheela C. Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia, (1996); 52(2): 115-119.
Kumari K, Mathew B, Augusti K. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian journal of biochemistry & biophysics, (1995); 32(1): 49-54.
Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, et al. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochimica et Biophysica Acta (BBA)-General Subjects, (1998); 1379(2): 233-244.
Sheela C, Augusti K. Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn. Indian journal of experimental biology, (1992); 30(6): 523-526.
Campos K, Diniz Y, Cataneo A, Faine L, Alves M, et al. Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. International journal of food sciences and nutrition, (2003); 54(3): 241-246.
Ranasinghe P, Pigera S, Premakumara GS, Galappaththy P, Constantine GR, et al. Medicinal properties of ‘true’cinnamon (Cinnamomum zeylanicum): a systematic review. BMC complementary and alternative medicine, (2013); 13(1): 1-10.
Safdar M, Khan A, Khattak M, Siddique M. Effect of various doses of cinnamon on blood glucose in diabetic individuals. Pakistan Journal of Nutrition, (2004); 3(5): 268-272.
Benencia F, Courreges M. In vitro and in vivo activity of eugenol on human herpesvirus. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, (2000); 14(7): 495-500.
Li H, Wong C, Cheng K, Chen F. Propriedades antioxidante in vitro e teor de fenólicos totais em extratos de metanol a partir de plantas medicinais. LWT-Food Sci Tecnologia, (2008); 41: 385-390.
Yang C-H, Li R-X, Chuang L-Y. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules, (2012); 17(6): 7294-7304.
Ebrahimi Y, Hasanvand A, Valibeik A, Ebrahimi F, Abbaszadeh S. Natural antioxidants and medicinal plants effective on hyperlipidemia. Research Journal of Pharmacy and Technology, (2019); 12(3): 1457-1462.
Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, et al. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. European journal of clinical investigation, (2006); 36(5): 340-344.
Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. The Journal of the American Board of Family Medicine, (2009); 22(5): 507-512.
Li R, Liang T, Xu L, Li Y, Zhang S, et al. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism. Food and Chemical Toxicology, (2013); 51: 419-425.
Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double-blind placebo-controlled study. Journal of Assocciation Physicians India, (2001); 49: 1057-61.
Losso JN, Holliday DL, Finley JW, Martin RJ, Rood JC, et al. Fenugreek bread: a treatment for diabetes mellitus. Journal of medicinal food, (2009); 12(5): 1046-1049.
Broca C, Gross R, Petit P, Sauvaire Y, Manteghetti M, Tournier M, et al. 4- hydroxyisoleucine, experimental evidence of its insulinotropic and antidiabetic properties. American Journal of Physiology, (1999); 277: 617–23.
Kamboj SS, Chopra K, Sandhir R. Hyperglycemia-induced alterations in synaptosomal membrane fluidity and activity of membrane-bound enzymes: beneficial effect of N-acetylcysteine supplementation. Neuroscience, (2009); 162: 349–58.
Pekiner DB, Evcimen DN, Nebioğlu S. Diabetes-induced decrease in rat brain microsomal Ca2+-ATPase activity. Cell Biochemistry Function, (2005); 23: 239–43.
Ebrahimi Y, Hasanvand A, Safarabadi AM, Sepahvand H, Moghadasi M, et al. A review of the most important herbal drugs effective in chest pain due to cardiac disease. Anaesthesia, Pain and Intensive Care, (2019); 23(1): 3-7.
Nelson RW, Ihle SL, Lewis LD, Salisbury SK, Miller T, Bergdall V, et al. Effects of dietary fiber supplementation on glycemic control in dogs with alloxan-induced diabetes mellitus. Ammerican Journal of Veterinary Research, (1991); 52: 2060-6.
Madar Z, Abel R, Samish S, Arad J. Glucose-lowering effect of fenugreek in non-insulin dependent diabetics. European journal of clinical nutrition, (1988); 42(1): 51-54.
Kahlon T, Chow F, Knuckles B, Chiu M. Cholesterol-lowering effects in hamsters of β-glucan-enriched barley fraction, dehulle whole barley; rice bran, and oat bran and their combinations. Cereal chemistry, (1993); 70(4): 435-440.
De Paula AC, Sousa RV, FigueiredoRibeiro RCL, Buckeridge MS. Hypoglycemic activity of polysaccharide fractions containing ßglucans from extracts of Rhynchelytrum repens (Willd) C.E. Hubb., Poaceae. Brazilian Journal of Medical Biology Research, (2005); 38: 885 – 93.
Deep G, Agarwal R. Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer and Metastasis Reviews, (2010); 29(3): 447-463.
Greenlee H, Abascal K, Yarnell E, Ladas E. Clinical applications of Silybum marianum in oncology. Integrative cancer therapies, (2007); 6(2): 158-165.
Velussi M, Cernigoi AM, Dapas F, Caffau C, Zilli M. Long-term (23 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. Journal of hepatology, (1997); 26(4): 871-879.
Soto C, Recoba R, Barron H, Alvarez C, Favari L. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, (2003); 136(3): 205-212.
Shokri-Jokari S, Mirlohi M, Mosharraf L. Flour and Bread Aflatoxin Contamination and Risk Assessment of Aflatoxin Intake through Bread Consumption in Iran. Journal of Isfahan Medical School, (2016); 33(368): 2420-2428.
Tsuzura S, Ikeda Y, Suehiro T, Ota K, Osaki F, et al. Correlation of plasma oxidized low-density lipoprotein levels to vascular complications and human serum paraoxonase in patients with type 2 diabetes. Metabolism, (2004); 53(3): 297-302.
Škottová N, Krečman V, Šimánek V. Activities of silymarin and its flavonolignans upon low density lipoprotein oxidizability in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, (1999); 13(6): 535-537.
Jalali AK, Ashrafi SM, Shokri S, Rezaee M, Ebrahimzadeh F, et al. The Effects of Olive Oil on Non-Alcoholic Fatty Liver Disease (NAFLD) in Male Wistar Rats. Herbal Medicines Journal, (2017); 2(2): 80-86.
Kaleem M, Asif M, Ahmed Q, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore medical journal, (2006); 47(8): 670.
Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijani B. The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: a randomized, double-blind, placebo-controlled clinical trial. Phytother Res. 2009; 23(8): 1186-9. (Persian).
Jadhav J, Masirkar V, Deshmukh V. Antihyperglycemic effect of Diospyros melanoxylon (Roxb.) bark against alloxan-induced diabetic rats. International journal of Pharmtech research, (2009); 1(2): 196-200.
Baharvand-Ahmadi B, Bahmani M, Tajeddini P, Naghdi N, Rafieian-Kopaei M. An ethno-medicinal study of medicinal plants used for the treatment of diabetes. Journal of Nephropathology 2016 Jan;5(1):44-50.
Laribi B, Kouki K, M'Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, (2015); 1039-26.
Sreelatha S, Inbavalli R. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan‐induced diabetic rats. Journal of food science, (2012); 77(7): T119-T123.
Aissaoui A, Zizi S, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. Journal of Ethnopharmacology, (2011); 137(1): 652-661.
Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin‐induced diabetic rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, (2009); 23(3): 404-406.
Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. British journal of nutrition, (2006); 96(4): 660-666.
Iranloye B, Arikawe A, Rotimi G, Sogbade A. Anti-diabetic and anti-oxidant effects of Zingiber officinale on alloxan-induced and insulin-resistant diabetic male rats. Nigerian Journal of Physiological Sciences, (2011); 26(1): 3.
Rani MP, Krishna MS, Padmakumari KP, Raghu KG, Sundaresan A. Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study. Journal of the Science of Food and Agriculture, (2012); 92(9): 1948-1955.
Hajibeglou A, Machanlou M, Mazandarani M, Sudagar M. Study of the effect of ethanol extract of Aloysia triphylla on anesthesia and improve the physiological parameters of rainbow trout (Oncorhynchus mykiss) after transfer. Aquatic Animals Nutrition, (2024); doi: 10.22124/janb.2023.25441.1216
Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, et al. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. International journal of food sciences and nutrition, (2013); 64(6): 682-686.
Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, et al. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. Journal of Complementary and Integrative Medicine, (2015); 12(2): 165-170.
Davarpanah M, Bakhtiari R, Javadi A, Eshraghi SS. Manufacture of L-Asparaginase by Actinobacteria Isolated from Rhizosphere of Plants in Tehran with Strong Anti-cancer Activity. Egyptian Journal of Veterinary Sciences, (2022); 53(1): 9-14.
Ilkhanizadeh B, Shirpoor A, Nemati S, Rasmi Y. Protective effects of ginger (Zingiber officinale) extract against diabetes-induced heart abnormality in rats. Diabetes & metabolism journal, (2016); 40(1): 46-53.
Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. British Journal of Nutrition, (2012); 108(7): 1194-1201.
Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environmental health perspectives, (2001); 109(suppl 1): 69-75.
Mohammadian, T., Oskooie nejad monfared, G., Razi jalali, M., Torfi, M. Comparison of continuous and pulse administration of probiotic bacteria potency of Lactobacillus sp., Bacillus thuringiensis and B. cereus in the basal diet on biochemical parameters of Lates calcarifer. Aquatic Animals Nutrition, (2022); 8(2): 55-70.
Davarpanah M, Bakhtiari R, Karimi M, Hosseini SF, Esmaeili A. Iranian Native Medicinal Plants Affecting Staphylococcus aureus as Septic Pathogens: An updated Review. Egyptian Journal of Veterinary Sciences, (2022); 53(1): 1-8.
Kane MP, Abu-Baker A, Busch RS. The utility of oral diabetes medications in type 2 diabetes of the young. Current Diabetes Reviews, (2005); 1(1): 83-92.
Bailey CJ. Biguanides and NIDDM. Diabetes care, (1992); 15(6): 755-772.
Valadi A, Nasri SI, Abbasi NA, Amin GR. Antinociceptive and anti-inflammatory effects of hydroalchoholic extract of Anethum graveolens L. seed. Journal of Medicinal Plants, (2010);9(34): 1-3.
Riccio A, Del Prato S. Vigili de Kreutzenberg S, Tiengo A. Glucose and lipid metabolism in non-insulindependent diabetes: effect of metformin. Diabetes Metabolic, (1991); 17180-184.
Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, et al. Acute antihyperglycemic mechanisms of metformin in NIDDM: evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes, (1994); 43(7): 920-928.
Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. New England Journal of Medicine, (1990); 322(4): 223-228.
Najafpour Navai, Mehrdokht, Sefidkan. Medicinal plants and herbal medicines against diabetes in Iran. Iran's Nature, (2020); 22; 5 (4): 7-20.
Amirzargar N, Heidari-Soureshjani S, Yang Q, Abbaszadeh S, Khaksarian M. Neuroprotective effects of medicinal plants in cerebral hypoxia and anoxia: A systematic review. The Natural Products Journal, (2020); 10(5): 550-565.
Mussavi M, Asadollahi K, Janbaz F, Mansoori E, Abbasi N. The evaluation of red reflex sensitivity and specificity test among neonates in different conditions. Iranian Journal of Pediatrics, (2014); 24(6): 697.
Bahmani M, Saki K, Asadbeygi M, Adineh A, Saberianpour S, Rafieian-Kopaei M, Bahmani F, Bahmani E. The effects of nutritional and medicinal mastic herb (Pistacia atlantica). Journal of Chemical Pharmamaceutical Research, (2015); 7(1): 646-53.
Karimi E, Abbasi S, Abbasi N. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: involvement of growth factors and integrin‐linked kinase. Drug design, Development and Therapy, (2019); 25: 2513-32.
Sedighi M, Bahmani M, Asgary S, Beyranvand F, Rafieian-Kopaei M. A review of plant-based compounds and medicinal plants effective on atherosclerosis. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, (2017); 22: 1.
Abbasi N, Akhavan MM, Rahbar‐Roshandel N, Shafiei M. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin‐linked kinase and cyclooxygenase‐2. Phytotherapy Research, (2014); 28(9): 1301-7.
Baharvand-Ahmadi B, Bahmani M, Naghdi N, Saki K, Baharvand A, Rafieian-Kopaei M. Medicinal plants used to treat infectious and non-infectious diseases of skin and skin appendages in city of Urmia, northwest Iran. Der Pharmacia Lettre, (2015); 7(11): 189-96.
DOI: http://dx.doi.org/10.62940/als.v11i1.2254
Refbacks
- There are currently no refbacks.